@article{VYURU_2018_11_3_a0,
author = {A. M. Akhtyamov and Kh. R. Mamedov and E. N. Yilmazoglu},
title = {Boundary inverse problem for star-shaped graph with different densities strings-edges},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--17},
year = {2018},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/}
}
TY - JOUR AU - A. M. Akhtyamov AU - Kh. R. Mamedov AU - E. N. Yilmazoglu TI - Boundary inverse problem for star-shaped graph with different densities strings-edges JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 5 EP - 17 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/ LA - en ID - VYURU_2018_11_3_a0 ER -
%0 Journal Article %A A. M. Akhtyamov %A Kh. R. Mamedov %A E. N. Yilmazoglu %T Boundary inverse problem for star-shaped graph with different densities strings-edges %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 5-17 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/ %G en %F VYURU_2018_11_3_a0
A. M. Akhtyamov; Kh. R. Mamedov; E. N. Yilmazoglu. Boundary inverse problem for star-shaped graph with different densities strings-edges. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/
[1] Levitan B. M., Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | DOI | MR | Zbl
[2] Marchenko V. A., Sturm–Liouville Operators and Applications, Birkhauser, Basel–Boston–Stuttgart, 1986 | DOI | Zbl
[3] Naimark M. A., Linear Differential Operators, v. II, Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing, London–Toronto–Sydney, 1968 | MR | Zbl
[4] Levitan B. M., Gasymov M. G., “Determination of a Differential Equation by Two of Its Spectra”, Russian Mathematical Surveys, 19:2 (1964), 1–63 | DOI | MR
[5] Gasymov M. G., Guseinov I. M., Nabiev I. M., “The Inverse Problem for the Sturm–Liouville Operator with Non-Separable Self-Adjoint Boundary Conditions”, Sibirskii Matematicheskii Journal, 31:6 (1991), 46–54 (in Russian) | MR
[6] Panakhov E. S., Koyunbakan H., Unal Ic., “Reconstruction Formula for the Potential Function of Sturm–Liouville Problem with Eigenparameter Boundary Condition”, Inverse Problems in Science and Engineering, 18:1 (2010), 173–180 | DOI | MR | Zbl
[7] Mamedov Kh. R., Cetinkaya F. A., “A Uniqueness Theorem for a Sturm–Liouville Equation with Spectral Parameter in Boundary Conditions”, Applied Mathematics and Information Sciences, 9:2 (2015), 981–988 | MR
[8] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., “General Inverse Sturm–Liouville Problem with Symmetric Potential”, Azerbaijan Journal of Mathematics, 5:2 (2015), 96–108 | MR | Zbl
[9] Akhtyamov A. M., Sadovnichy V. A., Sultanaev Ya. T., “Inverse Problem for the Diffusion Operator with Symmetric Functions and General Boundary Conditions”, Eurasian Mathematical Journal, 8:1 (2017), 10–22 | MR
[10] Kadchenko S. I., “A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:4 (2013), 15–25 | Zbl
[11] Kadchenko S. I., Zakirova G. A., “A Numerical Method for Inverse Spectral Problems”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 116–126 | DOI | Zbl
[12] Pokornyi Yu. V., Penkin O. V., Pryadiev V. L., Borvskih A. V., Lazarev K. P., Shabrov S. A., Differential Equations on Geometric Graphs, Fizmatlit, M., 2005 (in Russian) | MR
[13] Faddeev M. D., Pavlov B. S., “Model of Free Electrons and the Scattering Problem”, Theoretical and Mathematical Physics, 55:2 (1983), 485–492 | DOI | MR
[14] Kottos T., Smilansky U., “Quantum Chaos on Graphs”, Physical Review Letters, 79 (1997), 4794–4797 | DOI
[15] Langese J. E., Leugering G., Schmidt J. P., Modelling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994 | MR
[16] Pokornyi Yu. V., Borovskikh A. V., “Differential Equations on Networks (Geometric Graphs)”, Journal of Mathematical Sciences, 119:6 (2004), 691–718 | DOI | MR | Zbl
[17] Pokornyi Yu. V., Pryadiev V., “The Qualitative Sturm–Liouville Theory on Spatial Networks”, Journal of Mathematical Sciences, 119:6 (2004), 788–835 | DOI | MR | Zbl
[18] Sobolev A., Solomyak M., “Schrödinger Operator on Homogeneous Metric Trees: Spectrum in Gaps”, Reviews in Mathematical Physics, 14:5 (2002), 421–467 | DOI | MR | Zbl
[19] Belishev M. I., “Boundary Spectral Inverse Problem on a Class of Graphs (Trees) by the BC Method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl
[20] Brown B. M., Weikard R., “A Borg–Levinson Theorem for Trees”, Proceedings of The Royal Society. A Mathematical Physical and Engineering Sciences, 464:2062 (2005), 3231–3243 | DOI | MR
[21] Sviridyuk G. A., Shipilov A. S., “Stability of Solutions of Linear Oskolkov Equations on a Geometric Graph”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 19:2 (2009), 9–16 (in Russian)
[22] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Hoff Equation Stability on a Graph”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 20:1 (2010), 6–15 (in Russian)
[23] Akhtyamov A. M., Theory of Identification of Boundary Conditions and Its Applications, Fizmatlit, M., 2009 (in Russian) | Zbl
[24] Sadovnichii V. A., Sultanaev Ya. T., Valeev N. F., “Multiparameter Inverse Spectral Problems and Their Applications”, Doklady Mathematics, 79:3 (2009), 390–393 | DOI | MR | Zbl
[25] Martynova Yu. V., “A Model Inverse Spectral Problem for the Sturm–Liouville Operator on a Geometric Graph”, Bulletin of Bashkir University, 16:1 (2011), 4–10 (in Russian)
[26] Akhtyamov A. M., Aksenova Z. F., “Identification of Parameters of Elastic Fastening of a Mechanical System from Strings”, Modern problems of science and education, 2015, no. 1 (in Russian) https://science-education.ru/ru/article/view?id=18706 | MR
[27] Kadchenko S. I., Kakushkin S. N., Zakirova G. A., “Spectral Problems on Compact Graphs”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:3 (2017), 156–162 | DOI | Zbl
[28] Akhtyamov A. M., Utyashev I. M., “Identification of Boundary Conditions at Both Ends of a String from the Natural Vibration Frequencies”, Acoustical Physics, 61:6 (2015), 615–622 | DOI | MR