Boundary inverse problem for star-shaped graph with different densities strings-edges
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the mathematical modelling of star-shaped geometric graphs with n rib-strings of different density and the solution of the boundary inverse spectral problem for Sturm–Liouville differential operators on these graphs. Earlier it was shown that if strings have the same length and densities, then the stiffness coefficients of springs at the ends of graph strings are not uniquely recovered from natural frequencies. They are found up to permutations of their places. We show, that if the strings have different densities, then the stiffness coefficients of springs on the ends of graph strings are uniquely recovered from all natural frequencies. Counterexamples are shown that for the unique recovery of the stiffness coefficients of springs on n dead ends of the graph, it is not enough to use $n$ natural frequencies. Examples are also given showing that it is sufficient to use $n + 1$ natural frequencies for the uniqueness of the recovery of the stiffness coefficients of springs at the n ends of the strings. Those, the uniqueness or non-uniqueness of the restoration of the stiffness coefficients of springs at the ends of the strings depends on whether the string densities are identical or different.
Keywords: natural frequencies; star-shaped graph; inverse problems; strings; densities; boundary conditions.
@article{VYURU_2018_11_3_a0,
     author = {A. M. Akhtyamov and Kh. R. Mamedov and E. N. Yilmazoglu},
     title = {Boundary inverse problem for star-shaped graph with different densities strings-edges},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--17},
     year = {2018},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/}
}
TY  - JOUR
AU  - A. M. Akhtyamov
AU  - Kh. R. Mamedov
AU  - E. N. Yilmazoglu
TI  - Boundary inverse problem for star-shaped graph with different densities strings-edges
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 5
EP  - 17
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/
LA  - en
ID  - VYURU_2018_11_3_a0
ER  - 
%0 Journal Article
%A A. M. Akhtyamov
%A Kh. R. Mamedov
%A E. N. Yilmazoglu
%T Boundary inverse problem for star-shaped graph with different densities strings-edges
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 5-17
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/
%G en
%F VYURU_2018_11_3_a0
A. M. Akhtyamov; Kh. R. Mamedov; E. N. Yilmazoglu. Boundary inverse problem for star-shaped graph with different densities strings-edges. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a0/

[1] Levitan B. M., Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | DOI | MR | Zbl

[2] Marchenko V. A., Sturm–Liouville Operators and Applications, Birkhauser, Basel–Boston–Stuttgart, 1986 | DOI | Zbl

[3] Naimark M. A., Linear Differential Operators, v. II, Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing, London–Toronto–Sydney, 1968 | MR | Zbl

[4] Levitan B. M., Gasymov M. G., “Determination of a Differential Equation by Two of Its Spectra”, Russian Mathematical Surveys, 19:2 (1964), 1–63 | DOI | MR

[5] Gasymov M. G., Guseinov I. M., Nabiev I. M., “The Inverse Problem for the Sturm–Liouville Operator with Non-Separable Self-Adjoint Boundary Conditions”, Sibirskii Matematicheskii Journal, 31:6 (1991), 46–54 (in Russian) | MR

[6] Panakhov E. S., Koyunbakan H., Unal Ic., “Reconstruction Formula for the Potential Function of Sturm–Liouville Problem with Eigenparameter Boundary Condition”, Inverse Problems in Science and Engineering, 18:1 (2010), 173–180 | DOI | MR | Zbl

[7] Mamedov Kh. R., Cetinkaya F. A., “A Uniqueness Theorem for a Sturm–Liouville Equation with Spectral Parameter in Boundary Conditions”, Applied Mathematics and Information Sciences, 9:2 (2015), 981–988 | MR

[8] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., “General Inverse Sturm–Liouville Problem with Symmetric Potential”, Azerbaijan Journal of Mathematics, 5:2 (2015), 96–108 | MR | Zbl

[9] Akhtyamov A. M., Sadovnichy V. A., Sultanaev Ya. T., “Inverse Problem for the Diffusion Operator with Symmetric Functions and General Boundary Conditions”, Eurasian Mathematical Journal, 8:1 (2017), 10–22 | MR

[10] Kadchenko S. I., “A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:4 (2013), 15–25 | Zbl

[11] Kadchenko S. I., Zakirova G. A., “A Numerical Method for Inverse Spectral Problems”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 116–126 | DOI | Zbl

[12] Pokornyi Yu. V., Penkin O. V., Pryadiev V. L., Borvskih A. V., Lazarev K. P., Shabrov S. A., Differential Equations on Geometric Graphs, Fizmatlit, M., 2005 (in Russian) | MR

[13] Faddeev M. D., Pavlov B. S., “Model of Free Electrons and the Scattering Problem”, Theoretical and Mathematical Physics, 55:2 (1983), 485–492 | DOI | MR

[14] Kottos T., Smilansky U., “Quantum Chaos on Graphs”, Physical Review Letters, 79 (1997), 4794–4797 | DOI

[15] Langese J. E., Leugering G., Schmidt J. P., Modelling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994 | MR

[16] Pokornyi Yu. V., Borovskikh A. V., “Differential Equations on Networks (Geometric Graphs)”, Journal of Mathematical Sciences, 119:6 (2004), 691–718 | DOI | MR | Zbl

[17] Pokornyi Yu. V., Pryadiev V., “The Qualitative Sturm–Liouville Theory on Spatial Networks”, Journal of Mathematical Sciences, 119:6 (2004), 788–835 | DOI | MR | Zbl

[18] Sobolev A., Solomyak M., “Schrödinger Operator on Homogeneous Metric Trees: Spectrum in Gaps”, Reviews in Mathematical Physics, 14:5 (2002), 421–467 | DOI | MR | Zbl

[19] Belishev M. I., “Boundary Spectral Inverse Problem on a Class of Graphs (Trees) by the BC Method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[20] Brown B. M., Weikard R., “A Borg–Levinson Theorem for Trees”, Proceedings of The Royal Society. A Mathematical Physical and Engineering Sciences, 464:2062 (2005), 3231–3243 | DOI | MR

[21] Sviridyuk G. A., Shipilov A. S., “Stability of Solutions of Linear Oskolkov Equations on a Geometric Graph”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 19:2 (2009), 9–16 (in Russian)

[22] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Hoff Equation Stability on a Graph”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 20:1 (2010), 6–15 (in Russian)

[23] Akhtyamov A. M., Theory of Identification of Boundary Conditions and Its Applications, Fizmatlit, M., 2009 (in Russian) | Zbl

[24] Sadovnichii V. A., Sultanaev Ya. T., Valeev N. F., “Multiparameter Inverse Spectral Problems and Their Applications”, Doklady Mathematics, 79:3 (2009), 390–393 | DOI | MR | Zbl

[25] Martynova Yu. V., “A Model Inverse Spectral Problem for the Sturm–Liouville Operator on a Geometric Graph”, Bulletin of Bashkir University, 16:1 (2011), 4–10 (in Russian)

[26] Akhtyamov A. M., Aksenova Z. F., “Identification of Parameters of Elastic Fastening of a Mechanical System from Strings”, Modern problems of science and education, 2015, no. 1 (in Russian) https://science-education.ru/ru/article/view?id=18706 | MR

[27] Kadchenko S. I., Kakushkin S. N., Zakirova G. A., “Spectral Problems on Compact Graphs”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:3 (2017), 156–162 | DOI | Zbl

[28] Akhtyamov A. M., Utyashev I. M., “Identification of Boundary Conditions at Both Ends of a String from the Natural Vibration Frequencies”, Acoustical Physics, 61:6 (2015), 615–622 | DOI | MR