@article{VYURU_2018_11_2_a9,
author = {B. V. Semisalov},
title = {Development and analysis of the fast pseudo spectral method for solving nonlinear {Dirichlet} problems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {123--138},
year = {2018},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a9/}
}
TY - JOUR AU - B. V. Semisalov TI - Development and analysis of the fast pseudo spectral method for solving nonlinear Dirichlet problems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 123 EP - 138 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a9/ LA - ru ID - VYURU_2018_11_2_a9 ER -
%0 Journal Article %A B. V. Semisalov %T Development and analysis of the fast pseudo spectral method for solving nonlinear Dirichlet problems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 123-138 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a9/ %G ru %F VYURU_2018_11_2_a9
B. V. Semisalov. Development and analysis of the fast pseudo spectral method for solving nonlinear Dirichlet problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 123-138. http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a9/
[1] Babenko K. I., Fundamentals of Numerical Analysis, Nauka, M., 1986, 714 pp.
[2] Babenko K. I., “On the Saturation Phenomenon in Numerical Analysis”, Doklady Mathematics, 241:3 (1978), 505–508 (in Russian) | Zbl
[3] Semisalov B. V., “Non-Local Algorithm of Finding Solution to the Poisson Equation and Its Applications”, Computational Mathematics and Mathematical Physics, 54:7 (2014), 1110–1135 (in Russian) | DOI | Zbl
[4] L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013 | MR | Zbl
[5] Dzjadyk V. K., Introduction to the Theory of Uniform Approximation by Polynomials, Nauka, M., 1977
[6] A.M. Blokhin, A.S. Ibragimova, “Numerical Method for 2D Simulation of a Silicon MESFET with a Hydrodynamical Model Based on the Maximum Entropy Principle”, SIAM Journal Scientific Computing, 31:3 (2009), 2015–2046 | DOI | MR | Zbl
[7] Belov A. A., Kalitkin N. N., “Evolutionary Factorization and Superfast Relaxation Count”, Mathematical Models and Computer Simulations, 26:9 (2014), 47–64 (in Russian) | Zbl
[8] Belykh V. N., “Particular Features of Implementation of an Unsaturated Numerical Method for the Exterior Axisymmetric Neumann Problem”, Siberian Mathematical Journal, 54:6 (2013), 984–993 | DOI | MR | Zbl
[9] J. Boyd, Chebyshev and Fourier Spectral Methods, University of Michigan, Mineola–N.Y., 2000 | MR