@article{VYURU_2018_11_2_a8,
author = {R. I. Parovik},
title = {Mathematical model of a wide class memory oscillators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {108--122},
year = {2018},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a8/}
}
TY - JOUR AU - R. I. Parovik TI - Mathematical model of a wide class memory oscillators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 108 EP - 122 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a8/ LA - en ID - VYURU_2018_11_2_a8 ER -
%0 Journal Article %A R. I. Parovik %T Mathematical model of a wide class memory oscillators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 108-122 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a8/ %G en %F VYURU_2018_11_2_a8
R. I. Parovik. Mathematical model of a wide class memory oscillators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 108-122. http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a8/
[1] V. Volterra, “Sur les Equations Integro-Differentielleset Leurs Applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR | Zbl
[2] F. Mainardi, “Fractional Relaxation-Oscillation and Fractional Diffusion-Wave”, Chaos, Soliton Fractal, 7:9 (1996), 1461–1477 | DOI | MR | Zbl
[3] I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Berlin–Heidelberg, 2011 | DOI | Zbl
[4] Y. Xu, O.P. Agrawal, “Models and Numerical Solutions of Generalized Oscillator Equations”, Journal of Vibration and Acoustics, 136 (2014), 051005 | DOI
[5] R.I. Parovik, “Mathematical Modeling of Nonlocal Oscillatory Duffing System with Fractal Friction”, Bulletin KRASEC. Physical and Mathematical Sciences, 10:1 (2015), 16–21
[6] R.I. Parovik, “On a Credit Oscillatory System with the Inclusion of Stick-Slip”, E3S Web of Conferences, 11 (2016), 00018 | DOI
[7] Parovik R. I., “Mathematical Modelling of Hereditarity Airy Oscillator with Friction”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:1 (2017), 138–148 | DOI | Zbl
[8] V.A. Kim, “Duffing Oscillator with External Harmonic Action and Variable Fractional Riemann–Liouville Derivative Character – Izing Viscous Friction”, Bulletin KRASEC. Physical and Mathematical Sciences, 13:2 (2016), 46–49 | MR
[9] O. D. Lipko, “Mathematical Model of Propagation of Nerve Impulses with Regard Hereditarity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 33–43 | MR
[10] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[11] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W.H. Freeman, N.Y., 1991 | MR | Zbl
[12] R.I. Parovik, “Explicit Finite-Difference Scheme for the Numerical Solution of the Model Equation of Nonlinear Hereditary Oscillator with Variable-Order Fractional Derivatives”, Archives of Control Sciences, 26:3 (2016), 429–435 | DOI | MR
[13] Y. Xu, V.S. Erturk, “A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712 | MR | Zbl