@article{VYURU_2018_11_2_a7,
author = {V. I. Donskoy},
title = {A synthesis of {pseudo-Boolean} empirical models by precedential information},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {96--107},
year = {2018},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a7/}
}
TY - JOUR AU - V. I. Donskoy TI - A synthesis of pseudo-Boolean empirical models by precedential information JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 96 EP - 107 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a7/ LA - en ID - VYURU_2018_11_2_a7 ER -
%0 Journal Article %A V. I. Donskoy %T A synthesis of pseudo-Boolean empirical models by precedential information %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 96-107 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a7/ %G en %F VYURU_2018_11_2_a7
V. I. Donskoy. A synthesis of pseudo-Boolean empirical models by precedential information. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 96-107. http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a7/
[1] Antamoshkin A. N., Macich I. S., “Search Algorithms for Conditional Pseudo-Boolean Optimization”, Control, Communications and Security Systems, 1:1 (2016), 103–145 (in Russian) | Zbl
[2] Mazurov Vl. D., “Application of Methods of Theory of Pattern Recognition in the Optimal Planning and Management”, Proceeding of I-st all-Union Conference on Optimal Planning and National Economy Management, M., 1971, 49 (in Russian)
[3] L. Rokach, O.Z. Maimon, Data Mining with Decision Trees: Theory and Applications, World Scientific, New Jersey–London–Singapore–Bejing–Shanghai–Hong Kong–Taipei–Chennai, 2014 | DOI
[4] W.-Y. Loh, “Classification and Regression Trees”, Data Mining and Knowledge Discovery, 1:1 (2011), 14–23 | DOI
[5] Kolmogorov A. N., Algorithm, Information, Complexity, Znanie, M., 1991 (in Russian)
[6] Donskoy V. I., “Complexity of Families of Learning Algorithms and Estimation of the Nonrandomness of Extraction of Empirical Regularities”, Cybernetics and Systems Analysys, 48:2 (2012), 233–241 | DOI | MR | Zbl
[7] Donskoy V. I., “Capacity Estimates of the Main Classes of Empirical Generalizations Derived by the pVCD Method”, Scientific Notes of Taurida National V. I. Vernadsky University, 23(62):2 (2010), 56–65 (in Russian)
[8] Nilsson N. J., Learning Machines, McGraw-Hill, N.Y., 1965 | Zbl
[9] T.O. Bonates, P.L. Hammer, Pseudo-Boolean Regression, Rutcor Research Report RRR 3-2007, Rutgers Center for Operations Research of Rutgers University, New Jersey, 2007