A parametric stochastic model of bone geometry
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 44-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the present study is to develop a parametric bone modelling algorithm which takes into account bone microarchitecture. This approach allows to generate hematopoietic bone segment phantoms based on literature-derived micro- and macro dimensions. We propose a method for subdividing bones into small segments which can be described by simple geometric shapes filled with a stochastically generated rod-like model of the trabecular structure with appropriate voxel resolution. This approach avoids the disadvantages of non-parametric individual modelling based on computer tomography scans. The parametric method allows the simulation of individual variability in bone-specific dimensions. The model presented in this paper will be used to describe the geometry of hematopoietic sites, which in turn will serve as a basis for calculating the doses of irradiation of the hematopoietic cells of the bone marrow from the incorporated beta-emitters.
Keywords: micro- and macro- structure of the trabecular bone; stochastic modelling; voxelization.
@article{VYURU_2018_11_2_a3,
     author = {V. I. Zalyapin and Yu. S. Timofeev and E. A. Shishkina},
     title = {A parametric stochastic model of bone geometry},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {44--57},
     year = {2018},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a3/}
}
TY  - JOUR
AU  - V. I. Zalyapin
AU  - Yu. S. Timofeev
AU  - E. A. Shishkina
TI  - A parametric stochastic model of bone geometry
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 44
EP  - 57
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a3/
LA  - en
ID  - VYURU_2018_11_2_a3
ER  - 
%0 Journal Article
%A V. I. Zalyapin
%A Yu. S. Timofeev
%A E. A. Shishkina
%T A parametric stochastic model of bone geometry
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 44-57
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a3/
%G en
%F VYURU_2018_11_2_a3
V. I. Zalyapin; Yu. S. Timofeev; E. A. Shishkina. A parametric stochastic model of bone geometry. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a3/

[1] L.G.E. Cox, B. van Rietbergen, C.C. van Donkelaar, K. Ito, “Analysis of Bone Architecture Sensitivity for Changes in Mechanical Loading, Cellular Activity, Mechanotransduction, and Tissue Properties”, Biomechanics and Modeling in Mechanobiology, 10:2 (2011), 701–712 | DOI

[2] T.J. Vaughan, M. Voisin, G.L. Niebur, L.M. McNamara, “Multiscale Modeling of Trabecular Bone Marrow: Understanding the Micromechanical Environment of Mesenchymal Stem Cells During Osteoporosis”, Journal of Biomechanical Engineering, 137:1 (2015), 011003 | DOI

[3] B.J. McParland, Nuclear Medicine Radiation Dosimetry: Advanced Theoretical Principles, Springer Science and Business Media, London, 2010 | DOI

[4] J.T. Dant, R.B. Richardson, L.H. Nie, “Monte Carlo Simulation of Age-Dependent Radiation Dose from Alpha- and Beta-Emitting Radionuclides to Critical Trabecular Bone and Bone Marrow Targets”, Physics in Medicine and Biology, 58:10 (2013), 3301–3319 | DOI

[5] W.E. Bolch, C. Lee, M. Wayson, P. Johnson, “Hybrid Computational Phantoms for Medical Dose Reconstruction”, Radiation Environmental Biophysics, 49:2 (2010), 155–168 | DOI

[6] D. Pafundi, D. Rajon, D. Jokisch, C. Lee, W. Bolch, “An Image-Based Skeletal Dosimetry Model for the ICRP Reference Newborn – Internal Electron Sources”, Physics in Medicine and Biology, 55:7 (2010), 1785–1814 | DOI

[7] M. Hough, P. Johnson, D. Rajon, D. Jokisch, C. Lee, W. Bolch, “An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Male – Internal Electron Sources”, Physics in Medicine and Biology, 56:8 (2010), 2309–2346 | DOI

[8] Sh.E. O'Reilly, L.S. DeWeese, M.R. Maynard, D. Rajon, M.B. Wayson, E.L. Marshall, W. Bolch, “An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female – Internal Electron Sources”, Physics in Medicine and Biology, 61:24 (2016), 8794–8824 | DOI

[9] N.L. Fazzalari, I.H. Parkinson, Q.A. Fogg, P. Sutton-Smith, “Antero-Postero Differences in Cortical Thickness and Cortical Porosity of T12 to L5 Vertebral Bodies”, Joint Bone Spine, 73:3 (2006), 293–297 | DOI

[10] Volchkova A. Yu., Shishkina E. A., Tolstykh E. I., “Effect of the Shape of the Bone on the Power of the Doses in the Bone Marrow of a Person”, Materials of the VI International Scientific and Practical Conference (Chelyabinsk, November 8–9, 2016), 36–41 (in Russian)

[11] S. Roberts, P. Chen, “On Some Geometric Properties of Human Ribs”, Journal of Biomechanics, 3 (1970), 527–545 | DOI

[12] Z. Li, M.W. Kindig, D. Subit, R.W. Kent, “Influence of Mesh Density, Cortical Thickness and Material Properties on Human Rib Fracture Prediction”, Medical Engineering and Physics, 32:9 (2010), 998–1008 | DOI

[13] P. Sutton-Smith, H. Beard, N.L. Fazzalari, “Quantitative Backscattered Electron Microscopy of Normal and Osteoporotic Bone”, Proceedings of the Annual Scientific Meeting of the Australian and New Zealand Bone and Mineral Society (Perth, Australia, September 2005)

[14] A.M.H. Da Silva, J.M. Alves, O.L. Da Silva, N.F. Da Silva Junior, “Two and Three-Dimensional Morphometric Analysis of Trabecular Bone Using X-ray Microtomography ($\mu$CT)”, Revista Brasileira de Engenharia Biomédica, 30:2 (2014), 93–101 | DOI

[15] D.M. Connor, H.D. Hallen, D.S. Lalush, D.R. Sumner, Z. Zhong, “Comparison of Diffraction-Enhanced Computed Tomography and Monochromatic Synchrotron Radiation Computed Tomography of Human Trabecular Bone”, Physics in Medicine and Biology, 54:20 (2009), 6123–6133 | DOI

[16] A. Gefen, “Finite Element Modeling of the Microarchitecture of Cancellous Bone: Techniques And Applications”, Biomechanical Systems Technology, v. 3, World Scientific Publishing, 2009, 73–112 | DOI

[17] L.Y. Krestinina, F.G. Davis, S. Schonfeld, D.L. Preston, M. Degteva, S. Epifanova, A.V. Akleyev, “Leukaemia Incidence in the Techa River Cohort: 1953–2007”, British Journal of Cancer, 109 (2013), 2886–2893 | DOI

[18] Degteva M. O., Tolstykh E. I., Vorobiova M. I., Shagina N. B., Shishkina E. A., Bougrov N. G., “Techa River Dosimetry System: Present and Future”, Voprosy radiacionnoy bezopasnosti, 2006, no. 1, 81–95 (in Russian)

[19] Volchkova A. Y., Chuvakova D. A., Shishkina E. A., “Calculations of Tooth Enamel Doses from Internal Exposure Based on a Set of Voxel Phantoms by Example of the 1st Low Incisor”, Radiat Safety Problems (Mayak Production Association Scientific Journal), 2009, no. 56, 66–75 (in Russian)

[20] D.E. Knuth, The Art of Computer Programming, v. II, Seminumerical Algorithms, Addison-Wesley Longman, N.Y., 1998 | MR