Mathematical modelling of effective elastic parameters
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the study of the laws of elastic field propagation in inhomogeneous anisotropic media. At the same time, anisotropy is introduced as effective (averaged) parameters of a thin-layered medium, which determines the macroanisotropic elastic parameters of the rock. It is shown that the effective elastic parameters obtained from the theory of elasticity (Lame equations) do not coincide with the effective parameters obtained using the kinematic approach. On the basis of reduction of equations of the theory of elasticity to the systems of the ordinary differential equations of the first order the solution of a direct problem of seismic exploration (as a boundary value problem) for horizontally layered and anisotropic model of the geological environment is received. The given result of calculation of the seismic field registered on the daily surface in the case of an anisotropic object leads to the complex picture of the wave field. This means that it is necessary to improve the methods of seismic exploration in the course of the studying of anisotropic properties of the geological environment.
Keywords: seismic anisotropy; effective parameters; systems of differential equations; eikonal equation.
@article{VYURU_2018_11_2_a0,
     author = {P. N. Aleksandrov and V. N. Krizsky},
     title = {Mathematical modelling of effective elastic parameters},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--13},
     year = {2018},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a0/}
}
TY  - JOUR
AU  - P. N. Aleksandrov
AU  - V. N. Krizsky
TI  - Mathematical modelling of effective elastic parameters
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 5
EP  - 13
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a0/
LA  - ru
ID  - VYURU_2018_11_2_a0
ER  - 
%0 Journal Article
%A P. N. Aleksandrov
%A V. N. Krizsky
%T Mathematical modelling of effective elastic parameters
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 5-13
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a0/
%G ru
%F VYURU_2018_11_2_a0
P. N. Aleksandrov; V. N. Krizsky. Mathematical modelling of effective elastic parameters. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURU_2018_11_2_a0/

[1] Bayuk I. O., Interdisciplinary Approach to Prediction of Macroscopic and Filtration-Capacitive Properties of Hydrocarbon Reservoirs, Thesis of Doctor of Physical and Mathematical Sciences, M., 2013, 228 pp. (in Russian)

[2] Wait J. E., Underground Sound – Application of Seismic Waves, Elsevier Science Publishers, Amsterdam, 1983

[3] G.E. Backus, “Long-Wave Anisotropy Produced by Horizontal Layering”, Journal of Geophysical Research, 67:11 (1962), 4427–4440 | DOI | Zbl

[4] Rytov S. M., “Acoustic Properties of Fine-Layered Medium”, Akusticheskiy zhurnal, 2:1 (1956), 71–83 (in Russian)

[5] Aleksandrov P. N., “Derivation of the Eikonal Equation for Aanisotropic Inhomogeneous Media”, Innovative Technologies and Fundamental Researches in 2Q, 3D VSP Well-Surface Exploration and Seismology Commemorating 90 Year Anniversary of Y. I. Galperin, X Annual International Conference “Halperin Readings – 2010”, M., 2010, 53–59 (in Russian)