New approximate method for solving the Stokes problem in a domain with corner singularity
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 95-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce the notion of an $R_{\nu}$-generalized solution to the Stokes problem with singularity in a two-dimensional non-convex polygonal domain with one reentrant corner on its boundary in special weight sets. We construct a new approximate solution of the problem produced by weighted finite element method. An iterative process for solving the resulting system of linear algebraic equations with a block preconditioning of its matrix is proposed on the basis of the incomplete Uzawa algorithm and the generalized minimal residual method. Results of numerical experiments have shown that the convergence rate of the approximate $R_{\nu}$-generalized solution to an exact one is independent of the size of the reentrant corner on the boundary of the domain and equals to the first degree of the grid size $h$ in the norm of the weight space $W^1_{2,\nu}(\Omega)$ for the velocity field components in contrast to the approximate solution produced by classical finite element or finite difference schemes convergence to a generalized one no faster than at an $\mathcal{ O}(h^{\alpha})$ rate in the norm of the space $W^1_{2}(\Omega)$ for the velocity field components, where $\alpha<1$ and $\alpha$ depends on the size of the reentrant corner.
Keywords: сorner singularity; weighted finite element method; preconditioning.
@article{VYURU_2018_11_1_a8,
     author = {V. A. Rukavishnikov and A. V. Rukavishnikov},
     title = {New approximate method for solving the {Stokes} problem in a domain with corner singularity},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {95--108},
     year = {2018},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a8/}
}
TY  - JOUR
AU  - V. A. Rukavishnikov
AU  - A. V. Rukavishnikov
TI  - New approximate method for solving the Stokes problem in a domain with corner singularity
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 95
EP  - 108
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a8/
LA  - en
ID  - VYURU_2018_11_1_a8
ER  - 
%0 Journal Article
%A V. A. Rukavishnikov
%A A. V. Rukavishnikov
%T New approximate method for solving the Stokes problem in a domain with corner singularity
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 95-108
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a8/
%G en
%F VYURU_2018_11_1_a8
V. A. Rukavishnikov; A. V. Rukavishnikov. New approximate method for solving the Stokes problem in a domain with corner singularity. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a8/

[1] Rukavishnikov V. A., Rukavishnikova H. I., “The Finite Element Method for a Boundary Value Problem with Strong Singularity”, Journal of Computational and Applied Mathematics, 234 (2010), 2870–2882 | DOI | MR

[2] Rukavishnikov V. A., Mosolapov A. O., “New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity”, Journal of Computational Physics, 231 (2012), 2438–2448 | DOI | MR

[3] Moffatt H. K., “Viscous and Resistive Eddies Near a Sharp Corner”, Journal of Fluid Mechanics, 18 (1964), 1–18 | DOI | MR

[4] Dauge M., “Stationary Stokes and Navier–Stokes System on Two- or Three-Dimensional Domains with Corners. I. Linearized Equations”, SIAM Journal on Mathematical Analysis, 20 (1989), 74–97 | DOI | MR

[5] Schatz A. H., Wahlbin L. B., “Maximum Norm Estimates in the Finite Element Method on Plane Polygonal Domains. Part 1”, Mathematics of Computation, 32 (1978), 73–109 | DOI | MR

[6] Blum H., “The Influence of Reentrant Corners in the Numerical Approximation of Viscous Flow Problems”, Numerical Treatment of the Navier–Stokes Equations, 30:5 (1989), 37–46 | DOI | MR

[7] Guo B., Schwab C., “Analytic Regularity of Stokes Flow on Polygonal Domains in Countably Weighted Sobolev Spaces”, Journal of Computational and Applied Mathematics, 190 (2006), 487–519 | DOI | MR

[8] Burda P., Novotný J., Sístek J., “Precise FEM Solution of a Corner Singularity Using an Adjusted Mesh”, International Journal for Numerical Methods in Fluids, 47 (2005), 1285–1292 | DOI

[9] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, N.Y., 1991 | DOI | MR

[10] Linke A., “Collision in a Cross-shaped Domain – A Steady 2D Navier–Stokes Example Demonstrating the Importance of Mass Conservation in CFD”, Computational Methods in Applied Mechanics and Engineering, 198 (2009), 3278–3268 | DOI | MR

[11] Scott L. R., Vogelius M., “Norm Estimates for a Maximal Right Inverse of the Divergence Operator in Spaces of Piecewise Polynomials”, Mathematical Modeling and Numerical Analysis, 19 (1985), 111–143 | DOI | MR

[12] Rukavishnikov V. A., Rukavishnikova E. I., “The Finite Element Method for the First Boundary Value Problem with Coordinated Degeneration of the Initial Data”, Doklady Mathematics, 50 (1995), 335–339 ; V.A. Rukavishnikov, E.I. Rukavishnikova, “Metod konechnykh elementov dlya pervoi kraevoi zadachi s soglasovannym vyrozhdeniem iskhodnykh dannykh”, Doklady Akademii nauk, 338:6 (1994), 731–733 | MR

[13] Rukavishnikov V. A., Kuznetsova E. V., “A Scheme of a Finite Element Method for Boundary Value Problems with Non-Coordinated Degeneration of Input Data”, Numerical Analysis and Applications, 2 (2009), 250–259 | DOI | MR

[14] Rukavishnikov V. A., Rukavishnikova H. I., “On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space”, Numerical Functional Analysis and Optimization, 34 (2013), 1328–1347 | DOI | MR

[15] Rukavishnikov V. A., Mosolapov A. O., “Weighted Edge Finite Element Method for Maxwell's Equations with Strong Singularity”, Doklady Mathematics, 87 (2013), 156–159 | DOI | MR

[16] Rukavishnikov V. A., “On the Differential Properties of $R_{\nu}$-Generalized Solution of Dirichlet Problem”, Doklady Akademii nauk SSSR, 309 (1989), 1318–1320 | MR

[17] Rukavishnikov V. A., “On the Uniqueness of the $R_{\nu}$-Generalized Solution of Boundary Value Problems with Non-Coordinated Degeneration of the Initial Data”, Doklady Mathematics, 63 (2001), 68–70 | MR

[18] Rukavishnikov V. A., “On the Existence and Uniqueness of an $R_{\nu}$-Generalized Solution of a Boundary Value Problem with Uncoordinated Degeneration of the Input Data”, Doklady Mathematics, 90 (2014), 562–564 | DOI | MR

[19] Rukavishnikov V. A., Rukavishnikova H. I., “Dirichlet Problem with Degeneration of the Input Data on the Boundary of the Domain”, Differential Equations, 52 (2016), 681–685 | DOI | MR

[20] Ciarlet P., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR

[21] Qin J., On the Convergence of Some Low Order Mixed Finite Element for Incompressible Fluids, PhD thesis, Pennsylvania State University, Pennsylvania, 1994 | DOI | MR

[22] Bramble J. H., Pasciak J. E., Vassilev A. T., “Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems”, SIAM Journal on Numerical Analysis, 34 (1997), 1072–1092 | DOI | MR

[23] Saad Y., Iterative Methods for Sparse Linear Systems, University of Minnesota, Minneapolis, 2003 | DOI | MR

[24] Olshanskii M. A., Reusken A., “Analysis of a Stokes Interface Problem”, Numerische Mathematik, 103 (2006), 129–149 | DOI | MR

[25] Verfürth R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester–Stuttgart, 1996