Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 44-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider inverse problems of evolution type for mathematical models of quasistationary electromagnetic waves. It is assumed in the model that the wave length is small as compared with space inhomogeneities. In this case the electric and magnetic potential satisfy elliptic equations of second order in the space variables comprising integral summands of convolution type in time. After differentiation with respect to time the equation is reduced to a composite type equation with an integral summand. The boundary conditions are supplemented with the overdetermination conditions which are a collection of functionals of a solution (integrals of a solution with weight, the values of a solution at separate points, etc.). The unknowns are a solution to the equation and unknown coefficients in the integral operator. Global (in time) existence and uniqueness theorems of this problem and stability estimates are established.
Keywords: Sobolev-type equation; equation with memory; elliptic equation; inverse problem; boundary value problem.
@article{VYURU_2018_11_1_a4,
     author = {S. G. Pyatkov and S. N. Shergin},
     title = {Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {44--59},
     year = {2018},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - S. N. Shergin
TI  - Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 44
EP  - 59
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/
LA  - en
ID  - VYURU_2018_11_1_a4
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A S. N. Shergin
%T Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 44-59
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/
%G en
%F VYURU_2018_11_1_a4
S. G. Pyatkov; S. N. Shergin. Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/

[1] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner U. D., Linear and Non-Linear Sobolev Equations, Fizmatlit, M., 2007 (in Russian)

[2] Gabov S. A., Sveshnikov A. G., Linear Problems of the Theory of Nonstationary Interior Waves, Nauka, M., 1990 (in Russian) | MR

[3] Lorenzi A., Paparone I., “Direct and Inverse Problems in the Theory of Materials with Memory”, Rendiconti del Seminario Matematico della Universita di Padova, 87 (1992), 105–138 | MR

[4] Janno J., Von Wolfersdorf L., “Inverse Problems for Identification of Memory Kernels in Viscoelasticity”, Mathematical Methods in the Applied Sciences, 20 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[5] Durdiev D. K., Safarov Zh. Sh., “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Mathematical Notes, 97:6 (2015), 867–877 | DOI | MR

[6] Colombo F., Guidetti D., “An Inverse Problem for a Phase-Field Model in Sobolev Spaces”, Nonlinear Elliptic and Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, 64, Birkhäuser Verlag, Basel, 2005, 189–210 | DOI | MR

[7] Guidetti D., Lorenzi A., “A Mixed Type Identification Problem Related to a Phase-Field Model with Memory”, Osaka Journal of Mathematics, 44 (2007), 579–613 | MR

[8] Colombo F., Guidetti D., “A Global in Time Existence and Uniqueness Result for a Semilinear Integrodifferential Parabolic Inverse Problem in Sobolev Spaces”, Mathematical Models and Methods in Applied Sciences, 17:4 (2007), 537–565 | DOI | MR

[9] Colombo F., “On Some Methods to Solve Integro-Differential Inverse Problems of Parabolic Type”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 95–115 | MR

[10] Favini A., Lorenzi A., “Identication Problems for Singular Integro-Differential Equations of Parabolic Type”, Nonlinear Analysis, 56:6 (2004), 879–904 | DOI | MR

[11] Lorenzi A., Tanabe H., “Inverse and Direct Problems for Nonautonomous Degenerate Integro-Differential Equations of Parabolic Type with Dirichlet Boundary Conditions”, Differential Equations: Inverse and Direct Problems, Lecture Notes in Pure and Applied Mathematics, 251, Chapman and Hall/CRC Taylor and Francis Group, Boca Raton–London–N.Y., 2006, 197–244 | DOI | MR

[12] Abaseeva N., Lorenzi A., “Identification Problems for Nonclassical Integro-Differential Parabolic Equations”, Journal of Inverse and Ill-Posed Problems, 13:6 (2005), 513–535 | DOI | MR

[13] Asanov A., Atamanov E. R., “An Inverse Problem for a Pseudoparabolic Integro-Defferential Operator Equation”, Siberian Mathematical Journal, 38 (1995), 4645–655 | DOI | MR

[14] Avdonin S. A., Ivanov S. A., Wang J., Inverse Problems for the Heat Equation with Memory, 2017, 10 pp., arXiv: (accessed February 09, 2018) 1612.02129 [math-ph]

[15] Pandolfi L., Identification of the Relaxation Kernel in Diffusion Processes and Viscoelasticity with Memory via Deconvolution, 2016, 15 pp., arXiv: (accessed February 09, 2018) 1603.04321 [math.OC] | MR

[16] Denisov A. M., “An Inverse Problem for a Quasilinear Integro-Differential Equation”, Differential Equations, 37:10 (2001), 1420–1426 | DOI | MR

[17] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR

[18] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equations, Academic Press, N.Y., 2016 ; O.A. Ladyzhenskaya, N.N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | MR

[19] Gilbarg D., Trudinger N., Elliptic Differential Equation with Partial Derivative of the Second Order, Nauka, M., 1989 | MR

[20] Maugeri A., Palagachev D. K., Softova L. G., Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH Verlag, Berlin, 2000 | DOI | MR