Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 44-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider  inverse problems
of evolution type for mathematical models of quasistationary
electromagnetic waves. It is assumed in the model that the wave
length is small as compared with space inhomogeneities. In this
case  the electric and magnetic potential satisfy elliptic
equations of second order  in the space variables comprising
integral summands of convolution type in time. After
differentiation with respect to time the equation is reduced to
a composite type equation with an integral summand.  The
boundary conditions are supplemented with the overdetermination
conditions which are a collection of functionals of a solution
(integrals of a solution with weight, the values of a solution
at separate points, etc.). The unknowns are a solution to the
equation and unknown coefficients in the integral operator.
Global (in time) existence and uniqueness theorems of this
problem and stability estimates are established.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Sobolev-type equation; equation with memory; elliptic equation; inverse problem; boundary value problem.
                    
                    
                    
                  
                
                
                @article{VYURU_2018_11_1_a4,
     author = {S. G. Pyatkov and S. N. Shergin},
     title = {Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {44--59},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/}
}
                      
                      
                    TY - JOUR AU - S. G. Pyatkov AU - S. N. Shergin TI - Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 44 EP - 59 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/ LA - en ID - VYURU_2018_11_1_a4 ER -
%0 Journal Article %A S. G. Pyatkov %A S. N. Shergin %T Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 44-59 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/ %G en %F VYURU_2018_11_1_a4
S. G. Pyatkov; S. N. Shergin. Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/
