@article{VYURU_2018_11_1_a4,
author = {S. G. Pyatkov and S. N. Shergin},
title = {Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {44--59},
year = {2018},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/}
}
TY - JOUR AU - S. G. Pyatkov AU - S. N. Shergin TI - Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 44 EP - 59 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/ LA - en ID - VYURU_2018_11_1_a4 ER -
%0 Journal Article %A S. G. Pyatkov %A S. N. Shergin %T Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 44-59 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/ %G en %F VYURU_2018_11_1_a4
S. G. Pyatkov; S. N. Shergin. Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a4/
[1] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner U. D., Linear and Non-Linear Sobolev Equations, Fizmatlit, M., 2007 (in Russian)
[2] Gabov S. A., Sveshnikov A. G., Linear Problems of the Theory of Nonstationary Interior Waves, Nauka, M., 1990 (in Russian) | MR
[3] Lorenzi A., Paparone I., “Direct and Inverse Problems in the Theory of Materials with Memory”, Rendiconti del Seminario Matematico della Universita di Padova, 87 (1992), 105–138 | MR
[4] Janno J., Von Wolfersdorf L., “Inverse Problems for Identification of Memory Kernels in Viscoelasticity”, Mathematical Methods in the Applied Sciences, 20 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[5] Durdiev D. K., Safarov Zh. Sh., “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Mathematical Notes, 97:6 (2015), 867–877 | DOI | MR
[6] Colombo F., Guidetti D., “An Inverse Problem for a Phase-Field Model in Sobolev Spaces”, Nonlinear Elliptic and Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, 64, Birkhäuser Verlag, Basel, 2005, 189–210 | DOI | MR
[7] Guidetti D., Lorenzi A., “A Mixed Type Identification Problem Related to a Phase-Field Model with Memory”, Osaka Journal of Mathematics, 44 (2007), 579–613 | MR
[8] Colombo F., Guidetti D., “A Global in Time Existence and Uniqueness Result for a Semilinear Integrodifferential Parabolic Inverse Problem in Sobolev Spaces”, Mathematical Models and Methods in Applied Sciences, 17:4 (2007), 537–565 | DOI | MR
[9] Colombo F., “On Some Methods to Solve Integro-Differential Inverse Problems of Parabolic Type”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 95–115 | MR
[10] Favini A., Lorenzi A., “Identication Problems for Singular Integro-Differential Equations of Parabolic Type”, Nonlinear Analysis, 56:6 (2004), 879–904 | DOI | MR
[11] Lorenzi A., Tanabe H., “Inverse and Direct Problems for Nonautonomous Degenerate Integro-Differential Equations of Parabolic Type with Dirichlet Boundary Conditions”, Differential Equations: Inverse and Direct Problems, Lecture Notes in Pure and Applied Mathematics, 251, Chapman and Hall/CRC Taylor and Francis Group, Boca Raton–London–N.Y., 2006, 197–244 | DOI | MR
[12] Abaseeva N., Lorenzi A., “Identification Problems for Nonclassical Integro-Differential Parabolic Equations”, Journal of Inverse and Ill-Posed Problems, 13:6 (2005), 513–535 | DOI | MR
[13] Asanov A., Atamanov E. R., “An Inverse Problem for a Pseudoparabolic Integro-Defferential Operator Equation”, Siberian Mathematical Journal, 38 (1995), 4645–655 | DOI | MR
[14] Avdonin S. A., Ivanov S. A., Wang J., Inverse Problems for the Heat Equation with Memory, 2017, 10 pp., arXiv: (accessed February 09, 2018) 1612.02129 [math-ph]
[15] Pandolfi L., Identification of the Relaxation Kernel in Diffusion Processes and Viscoelasticity with Memory via Deconvolution, 2016, 15 pp., arXiv: (accessed February 09, 2018) 1603.04321 [math.OC] | MR
[16] Denisov A. M., “An Inverse Problem for a Quasilinear Integro-Differential Equation”, Differential Equations, 37:10 (2001), 1420–1426 | DOI | MR
[17] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR
[18] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equations, Academic Press, N.Y., 2016 ; O.A. Ladyzhenskaya, N.N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | MR
[19] Gilbarg D., Trudinger N., Elliptic Differential Equation with Partial Derivative of the Second Order, Nauka, M., 1989 | MR
[20] Maugeri A., Palagachev D. K., Softova L. G., Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH Verlag, Berlin, 2000 | DOI | MR