Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 35-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Least Absolute Deviations (LAD) method is a method alternative to the Ordinary Least Squares OLS method. It allows to obtain robust errors in case of violation of OLS assumptions. We present two types of LAD: Weighted LAD method and Generalized LAD method. The established interrelation of methods made it possible to reduce the problem of determining the GLAD estimates to an iterative procedure with WLAD estimates. The latter is calculated by solving the corresponding linear programming problem. The sufficient condition imposed on the loss function is found to ensure the stability of the GLAD estimators of the autoregressive models coefficients under emission conditions. It ensures the stability of GLAD-estimates of autoregressive models in terms of outliers. Special features of the GLAD method application for the construction of the regression equation and autoregressive equation without exogenous variables are considered early. This paper is devoted to extension of the previously discussed methods to the problem of estimating the parameters of autoregressive models with exogenous variables.
Keywords: algorithm; autoregressive model; linear programming; parameter identification.
@article{VYURU_2018_11_1_a3,
     author = {A. V. Panyukov and Ya. A. Mezaal},
     title = {Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a3/}
}
TY  - JOUR
AU  - A. V. Panyukov
AU  - Ya. A. Mezaal
TI  - Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 35
EP  - 43
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a3/
LA  - en
ID  - VYURU_2018_11_1_a3
ER  - 
%0 Journal Article
%A A. V. Panyukov
%A Ya. A. Mezaal
%T Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 35-43
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a3/
%G en
%F VYURU_2018_11_1_a3
A. V. Panyukov; Ya. A. Mezaal. Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a3/