@article{VYURU_2018_11_1_a13,
author = {A. S. Sheludko},
title = {Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {152--157},
year = {2018},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/}
}
TY - JOUR AU - A. S. Sheludko TI - Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 152 EP - 157 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/ LA - en ID - VYURU_2018_11_1_a13 ER -
%0 Journal Article %A A. S. Sheludko %T Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 152-157 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/ %G en %F VYURU_2018_11_1_a13
A. S. Sheludko. Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 152-157. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/
[1] Devaney R. L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989 | MR
[2] Bezruchko B. P., Smirnov D. A., Extracting Knowledge from Time Series. An Introduction to Nonlinear Empirical Modelling, Springer, 2010 | DOI | MR
[3] Aguirre L. A., Letellier C., Modeling Nonlinear Dynamics and Chaos: A Review, Mathematical Problems in Engineering, 2009 | DOI | MR
[4] Jafari S., Sprott J. C., Pham V.-T. et al., “A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints”, International Journal of Bifurcation and Chaos, 24:10 (2014), 18 pp. | DOI | MR
[5] Gotmare A., Bhattacharjee S. S., Patidar R., George N. V., “Swarm and Evolutionary Computing Algorithms for System Identification and Filter Design: A Comprehensive Review”, Swarm and Evolutionary Computation, 32 (2017), 68–84 | DOI
[6] Kurzhanski A. B., “Identification – A Theory of Guaranteed Estimates”, From Data to Model, 1989, 135–214 | DOI
[7] Jaulin L., Kieffer M., Didrit O., Walter E., Applied Interval Analysis, Springer, 2001 | DOI | MR
[8] Shary S. P., “A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity”, Reliable Computing, 8:5 (2002), 321–418 | DOI | MR
[9] Raissi T., Ramdani N., Candau Y., “Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations”, Automatica, 40:10 (2004), 1771–1777 | DOI | MR
[10] Paulen R., Villanueva M., Fikar M., Chachuat B., “Guaranteed Parameter Estimation in Nonlinear Dynamic Systems Using Improved Bounding Techniques”, European Control Conference (2013), 4514–4519
[11] Sheludko A. S., Shiryaev V. I., “Guaranteed State and Parameter Estimation for One-Dimensional Chaotic System”, 2nd International Conference on Industrial Engineering, Applications and Manufacturing (2016), 4 pp. | DOI