Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 152-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is focused on the modelling of a one-dimensional chaotic process which dynamics is described by a one-parameter nonlinear map. The problem is to estimate the initial condition and model parameter from measurements corrupted by additive errors. The considered guaranteed (set-membership) approach assumes that the prior information about the unknown variables (initial condition, model parameter and measurement errors) is presented as interval estimates. In this context, the estimation problem can be stated as a problem of solving a system of nonlinear inequalities. Due to the nonlinearity, it is not possible to obtain an exact characterization of the solution set. The developed algorithm computes an outer approximation as a union of non-overlapping boxes.
Keywords: chaotic process; nonlinear modelling; guaranteed approach; interval estimate; outer approximation.
@article{VYURU_2018_11_1_a13,
     author = {A. S. Sheludko},
     title = {Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {152--157},
     year = {2018},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/}
}
TY  - JOUR
AU  - A. S. Sheludko
TI  - Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 152
EP  - 157
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/
LA  - en
ID  - VYURU_2018_11_1_a13
ER  - 
%0 Journal Article
%A A. S. Sheludko
%T Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 152-157
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/
%G en
%F VYURU_2018_11_1_a13
A. S. Sheludko. Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 152-157. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a13/

[1] Devaney R. L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989 | MR

[2] Bezruchko B. P., Smirnov D. A., Extracting Knowledge from Time Series. An Introduction to Nonlinear Empirical Modelling, Springer, 2010 | DOI | MR

[3] Aguirre L. A., Letellier C., Modeling Nonlinear Dynamics and Chaos: A Review, Mathematical Problems in Engineering, 2009 | DOI | MR

[4] Jafari S., Sprott J. C., Pham V.-T. et al., “A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints”, International Journal of Bifurcation and Chaos, 24:10 (2014), 18 pp. | DOI | MR

[5] Gotmare A., Bhattacharjee S. S., Patidar R., George N. V., “Swarm and Evolutionary Computing Algorithms for System Identification and Filter Design: A Comprehensive Review”, Swarm and Evolutionary Computation, 32 (2017), 68–84 | DOI

[6] Kurzhanski A. B., “Identification – A Theory of Guaranteed Estimates”, From Data to Model, 1989, 135–214 | DOI

[7] Jaulin L., Kieffer M., Didrit O., Walter E., Applied Interval Analysis, Springer, 2001 | DOI | MR

[8] Shary S. P., “A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity”, Reliable Computing, 8:5 (2002), 321–418 | DOI | MR

[9] Raissi T., Ramdani N., Candau Y., “Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations”, Automatica, 40:10 (2004), 1771–1777 | DOI | MR

[10] Paulen R., Villanueva M., Fikar M., Chachuat B., “Guaranteed Parameter Estimation in Nonlinear Dynamic Systems Using Improved Bounding Techniques”, European Control Conference (2013), 4514–4519

[11] Sheludko A. S., Shiryaev V. I., “Guaranteed State and Parameter Estimation for One-Dimensional Chaotic System”, 2nd International Conference on Industrial Engineering, Applications and Manufacturing (2016), 4 pp. | DOI