@article{VYURU_2018_11_1_a12,
author = {Kh. M. Gamzaev},
title = {A numerical method of solving the coefficient inverse problem for the nonlinear equation of diffusion-reaction},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {145--151},
year = {2018},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a12/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - A numerical method of solving the coefficient inverse problem for the nonlinear equation of diffusion-reaction JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 145 EP - 151 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a12/ LA - ru ID - VYURU_2018_11_1_a12 ER -
%0 Journal Article %A Kh. M. Gamzaev %T A numerical method of solving the coefficient inverse problem for the nonlinear equation of diffusion-reaction %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 145-151 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a12/ %G ru %F VYURU_2018_11_1_a12
Kh. M. Gamzaev. A numerical method of solving the coefficient inverse problem for the nonlinear equation of diffusion-reaction. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 145-151. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a12/
[1] R.A. Fisher, “The Wave of Advance of Advantageous Genes”, Annals of Eugenics, 1937, no. 7, 355–369 | DOI
[2] Kolmogorov A. N., Petrovsky I. G., Piskunov I. S., “A Study of the Diffusion Equation with Increase in the Amount of Substance, and Its Application to a Biological Problem”, Bulletin of the Moscow State University, Section A, 1:6 (1937), 1–25
[3] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | DOI | MR
[4] Samarskii A. A., Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, 2007 | DOI | MR
[5] Kabanikhin S. I., Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, Germany, 2011 | DOI | MR
[6] Kamynin V. L., “The Inverse Problem of Determining the Lower-Order Coefficient in Parabolic Equations with Integral Observation”, Mathematical Notes, 94:2 (2013), 205–213 | DOI | DOI | MR
[7] Kozhanov A. I., “Parabolic Equations with Unknown Time-Dependent Coefficients”, Computational Mathematics and Mathematical Physics, 57:6 (2017), 956–966 | DOI | DOI | MR
[8] N.B. Kerimov, M.I. Ismailov, “An Inverse Coefficient Problem for the Heat Equation in the Case of Nonlocal Boundary Conditions”, Journal of Mathematical Analysis and Applications, 396:2 (2012), 546–554 | DOI | MR