@article{VYURU_2018_11_1_a0,
author = {A. A. Zamyshlyaeva and E. V. Bychkov},
title = {The {Cauchy} problem for the {Sobolev} type equation of higher order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--14},
year = {2018},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - E. V. Bychkov TI - The Cauchy problem for the Sobolev type equation of higher order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 5 EP - 14 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/ LA - en ID - VYURU_2018_11_1_a0 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A E. V. Bychkov %T The Cauchy problem for the Sobolev type equation of higher order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 5-14 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/ %G en %F VYURU_2018_11_1_a0
A. A. Zamyshlyaeva; E. V. Bychkov. The Cauchy problem for the Sobolev type equation of higher order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/
[1] А.А. Замышляева, А.С. Муравьев, “Вычислительный эксперимент для одной математической модели ионно-звуковых волн”, Вестник ЮУрГУ. Серия: Математическое моделирование и программирование, 8:2 (2015), 127–132
[2] Г.А. Свиридюк, Т.Г. Сукачева, “Фазовые пространства одного класса операторных полулинейных уравнений типа Соболева”, Дифференциальные уравнения, 26:2 (1990), 250–258 | MR
[3] Zamyshliaeva A. A., Linear Sobolev Type Equations of Higher Order, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR
[4] Sviridyuk G. A., Sukacheva T. G., “Galerkin Approximations of Singular Nonlinear Equations of Sobolev Type”, Russian Mathematics, 33:10 (1989), 56–59 | MR
[5] Н.А. Манакова, Е.А. Богатырева, “О решении задачи Коши–Дирихле для уравнения Баренблатта–Гильмана”, Известия Иркутского государственного университета. Серия: Математика, 7 (2014), 52–60
[6] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | MR
[7] Keller A. V., Sagadeeva M. A., “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 134–138 (in Russian) | DOI
[8] Sviriduyk G. A., Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Higher Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI | MR
[9] Leng S., Introduction to Differentiable Manifolds, Springer, N.Y., 2002 ; C. Leng, Vvedenie v teoriyu differentsiruemykh banakhovykh mnogoobrazii, Mir, M., 1967 | MR
[10] Zamyshlyaeva A. A., “The Phase Space of a High Order Sobolev Type Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 4:4 (2011), 45–57 (in Russian) | MR
[11] Nirenberg L., Topics in Nonlinear Functional Analysis, American Mathematical Society, N.Y., 2001 ; L. Nirenberg, Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1980 | MR | MR