The Cauchy problem for the Sobolev type equation of higher order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Of concern is the semilinear mathematical model of ion-acoustic waves in plasma. It is studied via the solvability of the Cauchy problem for an abstract complete semilinear Sobolev type equation of higher order. The theory of relatively polynomially bounded operator pencils, the theory of differentiable Banach manifolds, and the phase space method are used. Projectors splitting spaces into direct sums and an equation into a system of two equivalent equations are constructed. One of the equations determines the phase space of the initial equation, and its solution is a function with values from the eigenspace of the operator at the highest time derivative. The solution of the second equation is the function with values from the image of the projector. Thus, the sufficient conditions were obtained for the solvability of the problem under study. As an application, we consider the fourth-order equation with a singular operator at the highest time derivative, which is in the base of mathematical model of ion-acoustic waves in plasma. Reducing the model problem to an abstract one, we obtain sufficient conditions for the existence of a unique solution.
Keywords: semilinear Sobolev type equation of higher order; Cauchy condition; relatively polynomially bounded operator pencils; phase space method.
@article{VYURU_2018_11_1_a0,
     author = {A. A. Zamyshlyaeva and E. V. Bychkov},
     title = {The {Cauchy} problem for the {Sobolev} type equation of higher order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--14},
     year = {2018},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - E. V. Bychkov
TI  - The Cauchy problem for the Sobolev type equation of higher order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 5
EP  - 14
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/
LA  - en
ID  - VYURU_2018_11_1_a0
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A E. V. Bychkov
%T The Cauchy problem for the Sobolev type equation of higher order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 5-14
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/
%G en
%F VYURU_2018_11_1_a0
A. A. Zamyshlyaeva; E. V. Bychkov. The Cauchy problem for the Sobolev type equation of higher order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2018_11_1_a0/

[1] А.А. Замышляева, А.С. Муравьев, “Вычислительный эксперимент для одной математической модели ионно-звуковых волн”, Вестник ЮУрГУ. Серия: Математическое моделирование и программирование, 8:2 (2015), 127–132

[2] Г.А. Свиридюк, Т.Г. Сукачева, “Фазовые пространства одного класса операторных полулинейных уравнений типа Соболева”, Дифференциальные уравнения, 26:2 (1990), 250–258 | MR

[3] Zamyshliaeva A. A., Linear Sobolev Type Equations of Higher Order, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR

[4] Sviridyuk G. A., Sukacheva T. G., “Galerkin Approximations of Singular Nonlinear Equations of Sobolev Type”, Russian Mathematics, 33:10 (1989), 56–59 | MR

[5] Н.А. Манакова, Е.А. Богатырева, “О решении задачи Коши–Дирихле для уравнения Баренблатта–Гильмана”, Известия Иркутского государственного университета. Серия: Математика, 7 (2014), 52–60

[6] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | MR

[7] Keller A. V., Sagadeeva M. A., “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 134–138 (in Russian) | DOI

[8] Sviriduyk G. A., Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Higher Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI | MR

[9] Leng S., Introduction to Differentiable Manifolds, Springer, N.Y., 2002 ; C. Leng, Vvedenie v teoriyu differentsiruemykh banakhovykh mnogoobrazii, Mir, M., 1967 | MR

[10] Zamyshlyaeva A. A., “The Phase Space of a High Order Sobolev Type Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 4:4 (2011), 45–57 (in Russian) | MR

[11] Nirenberg L., Topics in Nonlinear Functional Analysis, American Mathematical Society, N.Y., 2001 ; L. Nirenberg, Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1980 | MR | MR