Dynamic analysis of a ballistic missible model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A hydraulic catching device in the form of a blind water-filled pipe is widely used to ensure safety in tests of ballistic missile models in hydrodynamic test tanks. An air chamber is provided at the pipe end wall to avoid a water-hammer effect. The developed math model and methodology for analyzing dynamics of a ballistic model in a hydraulic catching device permit to choose geometrical parameters of a catching device and decelerate the model in preset design conditions. The model longitudinal equation was derived from the Lagrange equation. The proposed methodology was used to create a software program and make trial calculations. The calculation data were compared with the experimental ones obtained during tests in a hydrodynamic tank. The calculation and experimental data are in good compliance proving adequacy and reliability of the developed math model for a deceleration hydrodynamic device. In case of the given Euler number and model mass, the developed math model allows choosing basic parameters of a catching decelerating device which are required for deceleration. The proposed methodology can be used to define geometrical parameters of a decelerating and catching device for testing a ballistic model in a hydrodynamic tank.
Keywords: missile model; hydrodynamics; hydraulic device; test; air chamber.
@article{VYURU_2017_10_4_a5,
     author = {V. I. Pegov and I. Yu. Moshkin},
     title = {Dynamic analysis of a ballistic missible model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {56--63},
     year = {2017},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a5/}
}
TY  - JOUR
AU  - V. I. Pegov
AU  - I. Yu. Moshkin
TI  - Dynamic analysis of a ballistic missible model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 56
EP  - 63
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a5/
LA  - ru
ID  - VYURU_2017_10_4_a5
ER  - 
%0 Journal Article
%A V. I. Pegov
%A I. Yu. Moshkin
%T Dynamic analysis of a ballistic missible model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 56-63
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a5/
%G ru
%F VYURU_2017_10_4_a5
V. I. Pegov; I. Yu. Moshkin. Dynamic analysis of a ballistic missible model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 56-63. http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a5/

[1] Degtiar V. G., Pegov V. I., Hydrodynamics of Rocket Launches from Underwaters, Machinostroyeniye, M., 2009 (in Russian)

[2] Pegov V. I., Moshkin I. Yu., A Methodology for Analyzing Dynamics of a Ballistic Model in a Hydrodynamic Tank, SUSU Electrical Engineering Department, Miass, 2016 (in Russian)

[3] Pegov V. I., Cheshko A. D., Moshkin I. Yu., Merkulov Ye. S., “Experimental Modelling and Simulation of Launching Effect on a Submarine”, A Look into the Future–2016, CDB ME “Rubin”, Saint Petersburg, 2015, 598–605 (in Russian) | Zbl

[4] Benevolski S. V., Burlov V. V., Kazakovski V. P., Ballistics, Penza artillery engineering institute, Penza, 2009 (in Russian)

[5] Dmitrievskiy A. A., Lysenko L. N., External Ballistics, Machinostroyeniye, M., 2005 (in Russian)

[6] Lysenko L. N., Guidance and Navigation of Ballistic Missiles, Izd-vo MGTU im. N.E. Baumana, M., 2007 (in Russian)

[7] De Molleson G. V., Stasenko A. L., “Flow Around the Body with a Gas-Dispersed Jet in a Wide Range of Values of the Braking Parameters”, Teplofizika vysokikh temperature, 55:1 (2017), 94–108 (in Russian)

[8] Pakhomov M. A., “Influence of Evaporation of Droplets on Gas Turbulence and Heat Transfer During a Two-Phase Flow Behind a Sudden Expansion of a Pipe”, Teplofizika vysokikh temperature, 54:3 (2016), 352–366 (in Russian) | DOI