@article{VYURU_2017_10_4_a12,
author = {F. Sh. Shokirov},
title = {Dynamics of interaction of {Bloch} type domain walls in a two-dimensional nonlinear sigma model},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {132--144},
year = {2017},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a12/}
}
TY - JOUR AU - F. Sh. Shokirov TI - Dynamics of interaction of Bloch type domain walls in a two-dimensional nonlinear sigma model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 132 EP - 144 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a12/ LA - ru ID - VYURU_2017_10_4_a12 ER -
%0 Journal Article %A F. Sh. Shokirov %T Dynamics of interaction of Bloch type domain walls in a two-dimensional nonlinear sigma model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 132-144 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a12/ %G ru %F VYURU_2017_10_4_a12
F. Sh. Shokirov. Dynamics of interaction of Bloch type domain walls in a two-dimensional nonlinear sigma model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 132-144. http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a12/
[1] Bar'yakhtar V. G., Ivanov B. A., Chetkin M. V., “Dynamics of Domain Walls in Weak Ferromagnets”, Physics–Uspekhi, 28:7 (1985), 563–588 | DOI | DOI
[2] Volkov V. V., Bokov V. A., “Domain Wall Dynamics in Ferromagnets”, Physics of the Solid State, 50:2 (2008), 199–228 | DOI
[3] Filippov B. N., “Static Properties and Nonlinear Dynamics of Domain Walls with a Vortexlike Internal Structure in Magnetic Films (Review)”, Low Temperature Physics, 28:10 (2002), 707–738 | DOI
[4] Muminov Kh.Kh., Shokirov F.Sh., “Dynamics of Interaction of Domain Walls in (2+1)-Dimensional Non-Linear Sigma Model”, News of the Academy of Sciences of the Republic of Tajikistan, 161:4 (2015), 57–64 (in Russian)
[5] Muminov Kh.Kh., Shokirov F.Sh., Mathematical Modeling of Nonlinear Dynamical Systems of Quantum Field Theory, Publishing House SB RAS, Novosibirsk, 2017, 375 pp. (in Russian)
[6] Muminov Kh.Kh., “Multidimensional Dynamic Topological Solitons in a Nonlinear Anisotropic Sigma Model”, Reports of the Academy of Sciences of the Republic of Tajikistan, 45:10 (2002), 28–36 (in Russian)
[7] Samarskiy A. A., The Theory of Difference Schemes, Marcel Dekker, N.Y., 2001 | MR
[8] Tikhonov A. N., Samarskiy A. A., Equations of Mathematical Physics, Dover Publications, N.Y., 2011 | MR
[9] Muminov Kh.Kh., Shokirov F.Sh., “Interactions of Dynamical and Topological Solitons in 1D Nonlinear Sigma Model”, Reports of the Academy of Sciences of the Republic of Tajikistan, 59:3–4 (2016), 120–126 (in Russian)
[10] Shokirov F.Sh., “Mathematical Modeling of Breathers of Two-Dimensional O(3) Nonlinear Sigma Model”, Mathematical Modeling and Computational Methods, 12:4 (2016), 3–16 (in Russian)
[11] Belova T. I., Kudryavtsev A. E., “Solitons and Their Interactions in Classical Field Theory”, Physics–Uspekhi, 40:4 (1997), 359–386 | DOI | DOI
[12] J.L. Gervais, A. Jevicki, B. Sakita, “Perturbation Expansion Around Extended-Particle States in Quantum Field Theory”, Physical Review D, 12:4 (1975), 1038–1051 | DOI
[13] Makhankov V. G., “Solitons and Numerical Experiments”, Physics of Elementary Particles and Atomic Nuclei, 14:1 (1983), 123–180 (in Russian)