Mathematical and software support for 3D mathematical modelling of the airflow impact
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 113-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of three-dimensional mathematical modelling of the effect of air flow on an optical-mechanical unit (OMU) located in the unpressurised compartment of the aircraft, is considered. To solve this problem, a mathematical model of gas dynamics based on the solution of a complete system of Navier–Stokes equations that describe the dynamics of a turbulent, spatially unsteady flow of a viscous gas is developed. The software for simulating the process of flow past a WMU model in the aircraft compartment was created. The effect of the air flow on the OMU is described by the torque acting on the OMU from the airflow side. A numerical method for solving the three-dimensional gasdynamic problem is presented. The numerical method is based on the numerical high order Godunov scheme, realized on an irregular grid with arbitrary cells (tetrahedral, prismatic shape). Flows of conservative variables are calculated by solving the Riemann problem with an approximate AUSM method. The system of equations is supplemented by a two-parameter k-model of turbulence, modified for the calculation of high-speed compressible flows. To significantly reduce the cost of computing resources, it is suggested to use stochastic models of the effect of air flow on WMU. A general simulation algorithm is described.
Keywords: optical-mechanical unit; mathematical modelling; the effects of air flow.
@article{VYURU_2017_10_4_a10,
     author = {I. E. Ivanov and I. A. Kryukov and E. V. Larina and V. L. Miroshkin},
     title = {Mathematical and software support for {3D} mathematical modelling of the airflow impact},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {113--123},
     year = {2017},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a10/}
}
TY  - JOUR
AU  - I. E. Ivanov
AU  - I. A. Kryukov
AU  - E. V. Larina
AU  - V. L. Miroshkin
TI  - Mathematical and software support for 3D mathematical modelling of the airflow impact
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 113
EP  - 123
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a10/
LA  - en
ID  - VYURU_2017_10_4_a10
ER  - 
%0 Journal Article
%A I. E. Ivanov
%A I. A. Kryukov
%A E. V. Larina
%A V. L. Miroshkin
%T Mathematical and software support for 3D mathematical modelling of the airflow impact
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 113-123
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a10/
%G en
%F VYURU_2017_10_4_a10
I. E. Ivanov; I. A. Kryukov; E. V. Larina; V. L. Miroshkin. Mathematical and software support for 3D mathematical modelling of the airflow impact. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 113-123. http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a10/

[1] Sobol V. R., “The Mathematical Methods for Modelling of the Impact of Airflow on Optical-Mechanical Unut Based on the Results of Field Experiments”, Advances of Modern Electronics, 2014, no. 4, 53–57 (in Russian)

[2] Goryainov A. V., Ivanov I. E., Semenikhin K. V., “Identification of a Statistical Model of Atmospheric Disturbances Acting on the Optical-Dynamic Unit Placed on the Aircraft's Board During It's Flight”, Abstracts of IV-th scientific and technical conference of young scientists and specialists “Actual problems of development of systems and tools ADS” (Joint-stock company GSKB Almaz-Antey, 26–28 September 2013) (in Russian)

[3] Weiss J. M., Maruszewski J. P., Smith W. A., “Implicit Solution of Preconditioned Navier–Stokes Equations Using Algebraic Multigrid”, The American Institute of Aeronautics and Astronautics Journal, 37:1 (1991), 29–36 | DOI

[4] Sarkar S., Erlebacher G., Hussaini M. Y., Kreiss H. O., “The Analysis and Modelling of Dilatational Terms in Compressible Turbulence”, Journal of Fluid Mechanics, 227 (1991), 473–493 | DOI | Zbl

[5] Chen Y.-S., Kim S.-W., Computation of Turbulent Flows Using an Extended k-$\varepsilon$ Turbulence Closure Model, NASA Contractor Report No 179204, 1987

[6] Chieng C. C., Launder B. E., “On the Calculation of Turbulent Heat Transport Downstream from an Abrupt Pipe Expansion”, Numerical Heat Transfer, 3 (1980), 189–207 | DOI

[7] Liou M. S., Steffen C. J., “A New Flux Splitting Scheme”, Journal of Computational Physics, 107 (1993), 23–39 | DOI | MR | Zbl

[8] Glushko G. S., Ivanov I. E., Kryukov I. A., “Method for Computation of Turbulent Supersonic Flows”, Mathematical Models and Computer Simulations, 2:4 (2010), 407–422 (in Russian) ; G.S. Glushko, I.E. Ivanov, I.A. Kryukov, “Metod rascheta turbulentnykh sverkhzvukovykh techenii”, Matematicheskoe modelirovanie, 21:12 (2009), 103–121 | DOI | MR | Zbl

[9] Ivanov I. E., Kryukov I. A., Larina E. I., “Numerical Simulation of High-Speed Viscous Intake Flow”, Physico-Chemical Kinetics in Gas Dynamics, 15:4 (2014), 10 pp. (in Russian) http://chemphys.edu.ru/issues/2014-15-4/articles/240/ | Zbl

[10] Borovikov S. N., Ivanov I. E., Kryukov I. A., “Construction of Three-Dimensional Delaunay Triangulation with Constraints for Bodies with Curvilinear Geometry”, Journal of Computational Mathematics and Mathematical Physics, 45:8 (2005), 1407–1423 (in Russian) | MR | Zbl