@article{VYURU_2017_10_4_a0,
author = {K. V. Vasyuchkova and N. A. Manakova and G. A. Sviridyuk},
title = {Some mathematical models with a relatively bounded operator and additive {\textquotedblleft}white noise{\textquotedblright} in spaces of sequences},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--14},
year = {2017},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/}
}
TY - JOUR AU - K. V. Vasyuchkova AU - N. A. Manakova AU - G. A. Sviridyuk TI - Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 5 EP - 14 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/ LA - en ID - VYURU_2017_10_4_a0 ER -
%0 Journal Article %A K. V. Vasyuchkova %A N. A. Manakova %A G. A. Sviridyuk %T Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 5-14 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/ %G en %F VYURU_2017_10_4_a0
K. V. Vasyuchkova; N. A. Manakova; G. A. Sviridyuk. Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/
[1] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] Hoff N. J., “Creep Buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20
[3] Keller A. V., Al-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:1 (2015), 20–27 | Zbl
[4] Zamyshlyaeva A. A., Keller A. V., Sagadeeva M. A., “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl
[5] Solovyova N. N., Zagrebina S. A., Sviridyuk G. A., “Sobolev Type Mathematical Models with Relatively Positive Operators in the Sequence Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 9:4 (2017), 27–35 | DOI
[6] Al-Isawi J. K. T., Zamyshlyaeva A. A., “Computational Experiment for One Class of Evolution Mathematical Models in Quasi-Sobolev Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:4 (2016), 141–147 | DOI
[7] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[8] Sviridyuk G. A., Manakova N. A., “Dynamic Models of Sobolev Type with the Showalter–Sidorov Condition and Additive “Noises””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 (in Russian) | DOI | Zbl
[9] Favini A., Sviridyuk G. A., Manakova N. A., “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl
[10] Favini A., Sviridyuk G. A., Zamyshlyaeva A. A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | MR | Zbl
[11] Favini A., Sviridyuk G. A., Sagadeeva M. A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranian Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[12] Sviridyuk G. A., Manakova N. A., “The Barenblatt–Zheltov–Kochina Model with Additive White Noise in Quasi-Sobolev Spaces”, Journal of Computational and Engineering Mathematics, 3:1 (2016), 61–67 | DOI | MR | Zbl
[13] Gliklikh Yu. E., “Investigation of Leontieff Type Equations with White Noise Protect by the Methods of Mean Derivatives of Stochastic Processes”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 27(286):13 (2012), 24–34 | Zbl
[14] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR | Zbl
[15] Kovacs M., Larsson S., “Introduction to Stochastic Partial Differential Equations”, Proceedings of “New Directions in the Mathematical and Computer Sciences” (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), v. 4, Publications of the ICMCS, Lagos, 2008, 159–232 | MR | Zbl
[16] Melnikova I. V., Filinkov A. I., Alshansky M. A., “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl