Some mathematical models with a relatively bounded operator and additive ``white noise'' in spaces of sequences
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the research of the class of stochastic models in mathematical physics on the basis of an abstract Sobolev type equation in Banach spaces of sequences, which are the analogues of Sobolev spaces. As operators we take polynomials with real coefficients from the analogue of the Laplace operator, and carry over the theory of linear stochastic equations of Sobolev type on the Banach spaces of sequences. The spaces of sequences of differentiable "noises" are denoted, and the existence and the uniqueness of the classical solution of Showalter–Sidorov problem for the stochastic equation of Sobolev type with a relatively bounded operator are proved. The constructed abstract scheme can be applied to the study of a wide class of stochastic models in mathematical physics, such as, for example, the Barenblatt–Zheltov–Kochina model and the Hoff model.
Keywords: Sobolev type equations; Banach spaces of sequences; the Nelson–Gliklikh derivative; "white noise".
@article{VYURU_2017_10_4_a0,
     author = {K. V. Vasyuchkova and N. A. Manakova and G. A. Sviridyuk},
     title = {Some mathematical models with a relatively bounded operator and additive ``white noise'' in spaces of sequences},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/}
}
TY  - JOUR
AU  - K. V. Vasyuchkova
AU  - N. A. Manakova
AU  - G. A. Sviridyuk
TI  - Some mathematical models with a relatively bounded operator and additive ``white noise'' in spaces of sequences
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 5
EP  - 14
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/
LA  - en
ID  - VYURU_2017_10_4_a0
ER  - 
%0 Journal Article
%A K. V. Vasyuchkova
%A N. A. Manakova
%A G. A. Sviridyuk
%T Some mathematical models with a relatively bounded operator and additive ``white noise'' in spaces of sequences
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 5-14
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/
%G en
%F VYURU_2017_10_4_a0
K. V. Vasyuchkova; N. A. Manakova; G. A. Sviridyuk. Some mathematical models with a relatively bounded operator and additive ``white noise'' in spaces of sequences. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2017_10_4_a0/