Spectral problems on compact graphs
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 3, pp. 156-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of finding the eigenvalues and eigenfunctions of abstract discrete semi-bounded operators on compact graphs is developed. Linear formulas allowing to calculate the eigenvalues of these operators are obtained. The eigenvalues can be calculates starting from any of their numbers, regardless of whether the eigenvalues with previous numbers are known. Formulas allow us to solve the problem of computing all the necessary points of the spectrum of discrete semibounded operators defined on geometric graphs. The method for finding the eigenfunctions is based on the Galerkin method. The problem of choosing the basis functions underlying the construction of the solution of spectral problems generated by discrete semibounded operators is considered. An algorithm to construct the basis functions is developed. A computational experiment to find the eigenvalues and eigenfunctions of the Sturm–Liouville operator defined on a two-ribbed compact graph with standard gluing conditions is performed. The results of the computational experiment showed the high efficiency of the developed methods.
Keywords: perturbed operators; eigenvalues; eigenfunctions; compact graph; continuity conditions; Kirchhoff conditions.
@article{VYURU_2017_10_3_a13,
     author = {S. I. Kadchenko and S. N. Kakushkin and G. A. Zakirova},
     title = {Spectral problems on compact graphs},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {156--162},
     year = {2017},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a13/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - S. N. Kakushkin
AU  - G. A. Zakirova
TI  - Spectral problems on compact graphs
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 156
EP  - 162
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a13/
LA  - en
ID  - VYURU_2017_10_3_a13
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A S. N. Kakushkin
%A G. A. Zakirova
%T Spectral problems on compact graphs
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 156-162
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a13/
%G en
%F VYURU_2017_10_3_a13
S. I. Kadchenko; S. N. Kakushkin; G. A. Zakirova. Spectral problems on compact graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 3, pp. 156-162. http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a13/

[1] Bayazitova A. A., “The Sturm–Liouville Problem on Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16(192):5 (2010), 4–10 (in Russian) | Zbl

[2] Vlasova E. A., Zarubin V. S., Kuvyrkin G. N., Approximate Methods of Mathematical Physics, Bauman MSTU, M., 2004, 704 pp.

[3] Kadchenko S. I., Kakushkin S. N., “The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 27(286):13 (2012), 45–57 (in Russian) | Zbl

[4] Kadchenko S. I., “Numerical Method for the Solution of Inverse Problems Generated by Perturbations of Self-Adjoint Operators by Method of Regularized Traces”, Vestnik of Samara State University. Natural Science Series, 2013, no. 6(107), 23–30 (in Russian)