Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 3, pp. 142-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose development of examination methodology based on a sequential application of the MAI method (i.e., the hierarchy analysis method) and associative training of neural networks. The proposed method is an alternative to the usual methods to solve a direct examination problem. We present a methodological approach to the examination problem. The approach allows to save information about all objects and consider their indicators in total. Therefore, there is the soft maximum principle (softmax), based on the model of expert evaluations mixing. This approach allows different interpretations of the examination results, which save quality unchanged overall picture of the examination object indicators ratio, and to get more reliable examination results, especially in cases where the objects characteristics are very different.
Keywords: hierarchy analysis method; self-organizing neural networks; expert evaluations mixing.
@article{VYURU_2017_10_3_a11,
     author = {O. S. Avsentiev and T. V. Meshcheryakova and V. V. Navoev},
     title = {Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {142--147},
     year = {2017},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a11/}
}
TY  - JOUR
AU  - O. S. Avsentiev
AU  - T. V. Meshcheryakova
AU  - V. V. Navoev
TI  - Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 142
EP  - 147
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a11/
LA  - en
ID  - VYURU_2017_10_3_a11
ER  - 
%0 Journal Article
%A O. S. Avsentiev
%A T. V. Meshcheryakova
%A V. V. Navoev
%T Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 142-147
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a11/
%G en
%F VYURU_2017_10_3_a11
O. S. Avsentiev; T. V. Meshcheryakova; V. V. Navoev. Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 3, pp. 142-147. http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a11/

[1] Saaty T. L., Decision Making for Leaders: The Analytical Hierarchy Process for Decisions in a Complex World, RWS Publications, Wadsworth, 1988, 292 pp. ; T. Saati, Prinyatie reshenii: Metod analiza ierarkhii, Radio i svyaz, M., 1993, 278 pp. | MR

[2] Haykin S., Neural Networks: A Comprehensive Foundation, Prentice Hall, N.Y., 1998, 842 pp.; S. Khaikin, Neironnye seti: polnyi kurs, Vilyams, M.–SPb.–Kiev, 2006, 1104 pp.

[3] Bukharin S. V., Melnikov A. V., Cluster-Hierarchical Methods of Examination of Economic Objects, Nauchnaya kniga, Voronezh, 2012, 276 pp.

[4] Bukharin S. V., Maltsev S. A., Melnikov A. V., Methods of Neural Networks in the Examination of Technical Means of Protection, Nauchnaya kniga, Voronezh, 2016, 177 pp.

[5] Medvedev V. S., Potemkin V. G., Neural Networks. Matlab 6, DIALOG-MIFI, M., 2002, 496 pp.