@article{VYURU_2017_10_3_a0,
author = {L. R. Kim-Tyan and B. V. Loginov and Yu. B. Rousak},
title = {Normal forms of the degenerate autonomous differential equations with the maximal {Jordan} chain and simple applications},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--15},
year = {2017},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a0/}
}
TY - JOUR AU - L. R. Kim-Tyan AU - B. V. Loginov AU - Yu. B. Rousak TI - Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 5 EP - 15 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a0/ LA - en ID - VYURU_2017_10_3_a0 ER -
%0 Journal Article %A L. R. Kim-Tyan %A B. V. Loginov %A Yu. B. Rousak %T Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 5-15 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a0/ %G en %F VYURU_2017_10_3_a0
L. R. Kim-Tyan; B. V. Loginov; Yu. B. Rousak. Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 3, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURU_2017_10_3_a0/
[1] Vainberg M. M., Trenogin V. A., Theory of Branching of Solutions of Non-Linear Equations, Nordhoof International Publishing, Leyden, 1974 ; M.M. Vainberg, V.A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | MR
[2] Arnold V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Moscow Center for Continuous Mathematical Education, M., 1999 | MR
[3] Shui-Nee Chow, Chengzhi Li, Duo Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994 ; D. Van, Ch. Li, Sh.-N. Chou, Normalnye formy i bifurkatsii vektornykh polei na ploskosti, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 2005 | MR | Zbl
[4] Jooss G., Adelmeyer M., Topics in Bifurcation Theory and Applications, World Scientific, Singapore–New Jersey–London–Hong Kong, 1992 | MR
[5] Loginov B. V., Rousak Yu. B., Kim-Tyan L. R., “Normal Forms of the Degenerate Differential Autonomous and Non-Autonomous Equations with the Maximal Jordan Chain of Length Two and Three”, The Bulletin of Irkutsk State University. Series: Mathematics, 12 (2015), 58–71 (in Russian) | Zbl
[6] Loginov B. V., Rousak Yu. B., Kim-Tyan L. R., “Normal Forms for the Degenerate Non-Autonomous Differential Equations in the Spaces $R^{n}$, $n=2,3,4$”, Sbornik nauchnykh trudov (Ulyanovsk, 2014), Prikladnaya matematika i mekhanika, 10, 142–160 (in Russian) [Б. В. Логинов, Ю. Б. Русак, Л. Р. Ким-Тян, “Нормальные формы для вырожденных неавтономных дифференциальных уравнений в пространствах $R^{n}$, $n=2,3,4$”, Сборник научных трудов, Прикладная математика и механика, 10, УлГТУ, Ульяновск, 2014, 142–160 ]
[7] Loginov B. V., Rousak Yu. B., Kim-Tyan L. R., “Differential Equations with Degenerated Variable Operator at the Derivative”, Current Trends in Analysis and Its Applications, Proceedings of the 9th ISAAC Congress (Krakow, 2013), 2015, 101–108 | DOI | MR | Zbl
[8] Marszalek W., “Fold Points and Singularity Induced Bifurcation in Inviscid Transonic Flow”, Physics Letters A, 376:28–29 (2012), 2032–2037 | DOI | Zbl
[9] Stepanov V. V., The Course of the Differential Equations, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, M., 1950