Effect of pore size parameters for mechanisms of nanofilm coatings on substrates of porous alumina
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 83-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modelling technique for the formation of epitaxial nanofilms based on a matrix of porous alumina is proposed. The formulation of the problem is given and the equations of the many-particle potential are described corresponding to the modified immersed atom method. The deposited nanofilms were formed by the atoms of ferrum, gold, germanium, silver, gallium and palladium. The investigations carried out have shown the presence of various mechanisms for the formation of nanofilms on porous substrates, depending on the type of epitaxial atoms. The pore was almost completely filled with the deposited atoms in some cases, the pore remained open in other cases. Single atoms reached the bottom of the pore for all types of atoms. The most complete and dense pore filling was observed when applying gallium atoms to the substrate. Porous substrates with applied nanofilms can be considered as an array of quantum dots and used to obtain optical and electrical effects. The active growth of the number of atoms in the pore takes place in the initial periods of time when Silting gallium atoms coatings with pores of different sizes was investigated. Further Silting pores is accompanied by the restructuring of the atomic structure, which corresponds to the stabilization of dependencies and a small decrease in the percentage of gallium atoms penetrating into the pores. Stabilization of the center of mass of deposited atoms is occurred at different depths pores. The center of mass is formed above the middle of the depth of the pore to pore radius 2–3 nm. The center of mass starts to form at one place near the middle of the depth of the pores with increasing pore size. The described techniques and the results obtained can be applied to the development of new promising layered composites based on porous substrates, to study their characteristics, and also to design nanofilms and prediction algorithms for properties.
Keywords: simulation; molecular dynamics; modified embedded atom method; nanofilms; porous alumina.
@article{VYURU_2017_10_2_a6,
     author = {A. V. Vakhrushev and A. Yu. Fedotov and A. V. Severjuhin and R. G. Valeev},
     title = {Effect of pore size parameters for mechanisms of nanofilm coatings on substrates of porous alumina},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {83--97},
     year = {2017},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a6/}
}
TY  - JOUR
AU  - A. V. Vakhrushev
AU  - A. Yu. Fedotov
AU  - A. V. Severjuhin
AU  - R. G. Valeev
TI  - Effect of pore size parameters for mechanisms of nanofilm coatings on substrates of porous alumina
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 83
EP  - 97
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a6/
LA  - ru
ID  - VYURU_2017_10_2_a6
ER  - 
%0 Journal Article
%A A. V. Vakhrushev
%A A. Yu. Fedotov
%A A. V. Severjuhin
%A R. G. Valeev
%T Effect of pore size parameters for mechanisms of nanofilm coatings on substrates of porous alumina
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 83-97
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a6/
%G ru
%F VYURU_2017_10_2_a6
A. V. Vakhrushev; A. Yu. Fedotov; A. V. Severjuhin; R. G. Valeev. Effect of pore size parameters for mechanisms of nanofilm coatings on substrates of porous alumina. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 83-97. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a6/

[1] Yu. Chapurina, V. V. Vinogradov, A. V. Vinogradov, V. E. Sobolev, I. P. Dudanov, V. V. Vinogradov, “Synthesis of Thrombolytic Sol–Gel Coatings: Toward Drug-Entrapped Vascular Grafts”, Journal of Medicinal Chemistry, 58:17 (2015), 6313–6317 | DOI | MR

[2] J. Y. Ying, “Nanoporous Systems and Templates the Unique Self-Assembly and Synthesis of Nanostructures”, Science Spectra, 18 (1999), 56–63

[3] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal Pore Arrays with a 50–420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina”, Journal of Applied Physics, 84:11 (1998), 6023–6026 | DOI

[4] Doroshenko M. N., Gerasimchuk A. I., Mazurenko E. A., “Catalytic Effect of Surface on PE MOCVD-Synthesis of Germanium Nanotubes”, Chemistry, Physics and Technology of Surface, 4:4 (2013), 366–372 (in Russian)

[5] C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, “Controlling Growth and Field Emission Properties of Silicon Nanotube Arrays by Multistep Template Replication and Chemical Vapour Deposition”, Applied Physics Letters, 87:11 (2005), 113104.1–13104.3 | DOI

[6] Yu. V. Melnik, A. E. Nikolaev, S. I. Stepanov, A. S. Zubrilov, I. P. Nikitina, K. V. Vassilevski, D. V. Tsvetkov, A. I. Babanin, Yu. G. Musikhin, V. V. Tretyakov, V. A. Dmitriev, “AlN/GaN and AlGaN/GaN Heterostructures Grown by HVPE on SiC Substrates”, Materials Research Society Symposium Proceedings, 482 (1998), 245–249 | DOI

[7] A. E. Nikolaev, Yu. V. Melnik, N. I. Kuznetsov, A. M. Strelchuk, A. P. Kovarsky, K. V. Vassilevski, V. A. Dmitriev, “GaN pn-Structures Grown by Hydride Vapor Phase Epitaxy”, Materials Research Society Symposium Proceedings, 482 (1998), 251–256 | DOI

[8] H. J. Xu, X. J. Li, “Structure and Photoluminescent Properties of a ZnS/Si Nanoheterostructure Based on a Silicon Nanoporous Pillar Array”, Semiconductor Science and Technology, 24:7 (2009), 075008 | DOI | Zbl

[9] H. Masuda, “Highly Ordered Nanohole Arrays in Anodic Porous Alumina”, Ordered Porous Nanostructures and Applications, Springer US, 2005, 37–55 | DOI

[10] Vakhrushev A. V., Fedotov A. Yu., “Investigation of Probability Distribution Laws of Structural Properties of Nanoparticles Simulated by Molecular Dynamics Method”, Computational continuum mechanics, 2:2 (2009), 14–21

[11] A. V. Vakhrouchev, “Computer Simulation of Nanoparticles Formation, Moving, Interaction and Self-Organization”, Journal of Physics: Conference Series, 61:1 (2007), 26–30 | DOI

[12] Vakhrushev A. V., Fedotov A. Yu., Shushkov A. A., Shushkov A. V., “Study of Process Formation of Metal Nanoparticles, Determination of Mechanical and Structural Parameters of Nanoobjects and Composites with Its”, Chemical Physics and Mesoscopics, 12:4 (2010), 486–495 (in Russian)

[13] Alikin V. N., Vakhrushev A. V., Golubchikov V. B., Lipanov A. M., Serebrennikov S. Yu., Design and Research of Aerosol Nanotechnology, v. 3, Fuel. Charges. Engines, Engineering, M., 2010

[14] Vakhrushev A. V., Fedotov A. Yu., “Modelling of Composite Nanoparticle Formation from a Gas Phase”, International Scientific Journal for Alternative Energy and Ecology, 2007, no. 10, 22–26 (in Russian)

[15] Vakhrushev A. V., Severjuhin A. V., Severjuhina O. Yu., “Modelling Beginning Stage of Nanowhisker Si-Au Grown on Si Substrate”, Chemical Physics and Mesoscopics, 12:1 (2010), 24–35 (in Russian)

[16] J. E. Lennard-Jones, “On the Determination of Molecular Fields. II. From the Equation of State of a Gas”, Proceedings of the Royal Society of London A, 106 (1924), 463–477 | DOI | MR

[17] F. H. Stillinger, T. A. Weber, “Computer Simulation of Local Order in Condensed Phases of Silicon”, Physical Review B, 31:8 (1985), 5262–5271 | DOI

[18] J. Tersoff, “New Empirical Approach for the Structure and Energy of Covalent Systems”, Physical Review B, 37:12 (1988), 6991–7000 | DOI

[19] M. S. Daw, M. I. Baskes, “Semiempirical, Quantum Mechanical Calculations of Hydrogen Embrittlement in Metals”, Physical Review Letters, 50:17 (1983), 1285–1288 | DOI

[20] M. S. Daw, “Model of Metallic Cohesion: The Embedded-Atom Method”, Physical Review B, 39:11 (1989), 7441–7452 | DOI

[21] M. S. Daw, M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals”, Physical Review B, 29:12 (1984), 6443–6453 | DOI

[22] M. I. Baskes, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities”, Physical Review B, 46:5 (1992), 2727–2742 | DOI

[23] B. Jelinek, J. Houze, S. Kim, M. F. Horstemeyer, M. I. Baskes, S. G. Kim, “Modified Embedded-Atom Method Interatomic Potentials for the Mg-Al Alloy System”, Physical Review B, 75:5 (2007), 054106 | DOI

[24] Y.-M. Kim, B.-J. Lee, M. I. Baskes, “Modified Embedded-Atom Method Interatomic Potentials for Ti and Zr”, Physical Review B, 74:1 (2006), 014101 | DOI

[25] Vakhrushev A. V., Fedotov A. Yu., Severyukhin A. V., Suvorov S. V., “Simulation of Producing Special Nanostructural Layers in Epitaxial Structures for Thin Photoelectric Converters”, Chemical Physics and Mesoscopics, 16:3 (2014), 364–380 (in Russian)

[26] Vakhrushev A. V., Severyukhin A. V., Fedotov A. Yu., Valeev R. G., “Investigation of Deposition of Nanofilms on a Porous Aluminium Oxide Substrate by Mathematical Modelling Techniques”, Computational Continuum Mechanics, 9:1 (2016), 59–72 (in Russian) | Zbl

[27] Vakhrushev A. V., Fedotov A. Yu., Severyukhin A. V., Valeev R. G., “Simulation of the Deposition Process on a Substrate Nanofilms of Porous Alumina”, Chemical Physics and Mesoscopics, 17:4 (2015), 511–522 (in Russian)

[28] LAMMPS Molecular Dynamics Simulator, (accessed 25.05.2016) http://lammps.sandia.gov

[29] VMD — Visual Molecular Dynamics. Theoretical and Computational Biophysics Group, (accessed 25.05.2016) https://www.ks.uiuc.edu/Research/vmd

[30] W. Hoover, “Canonical Dynamics: Equilibrium Phase-Space Distributions”, Physical Review A, 31:3 (1985), 1695–1697 | DOI