Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 63-73
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The linear system of partial
differential equations is considered. It is assumed that there is
an irreversible  linear operator in the main part of the system.
The operator is assumed to enjoy the skeletal decomposition. The
differential operators of such system are assumed to have
sufficiently smooth coefficients. In the concrete situations the
domains of such differential operators are linear manifolds of
smooth enough functions with values in Banach space. Such
functions are assumed to satisfy additional boundary conditions.
The concept of a skeleton chain of linear operator is introduced.
It is assumed that the operator generates a skeleton chain of the
finite length. In this case, the  problem of solution of a given
system is reduced to a regular split system of equations. The
system is resolved with respect to the highest differential
expressions taking into account certain initial and boundary
conditions.
 The proposed approach  can be generalized and applied to the
boundary value problems in the nonlinear case. Presented results
develop the theory of degenerate differential equations summarized
in the monographs  MR 87a:58036, Zbl 1027.47001.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
ill-posed problems; Cauchy problems; irreversible operator; skeleton decomposition; skeleton chain; boundary value problems.
                    
                    
                    
                  
                
                
                @article{VYURU_2017_10_2_a4,
     author = {D. N. Sidorov and N. A. Sidorov},
     title = {Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a4/}
}
                      
                      
                    TY - JOUR AU - D. N. Sidorov AU - N. A. Sidorov TI - Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 63 EP - 73 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a4/ LA - en ID - VYURU_2017_10_2_a4 ER -
%0 Journal Article %A D. N. Sidorov %A N. A. Sidorov %T Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 63-73 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a4/ %G en %F VYURU_2017_10_2_a4
D. N. Sidorov; N. A. Sidorov. Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a4/
