@article{VYURU_2017_10_2_a3,
author = {S. G. Pyatkov and O. V. Goncharenko},
title = {Parameter identification and control in heat transfer processes},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {51--62},
year = {2017},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a3/}
}
TY - JOUR AU - S. G. Pyatkov AU - O. V. Goncharenko TI - Parameter identification and control in heat transfer processes JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 51 EP - 62 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a3/ LA - en ID - VYURU_2017_10_2_a3 ER -
%0 Journal Article %A S. G. Pyatkov %A O. V. Goncharenko %T Parameter identification and control in heat transfer processes %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 51-62 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a3/ %G en %F VYURU_2017_10_2_a3
S. G. Pyatkov; O. V. Goncharenko. Parameter identification and control in heat transfer processes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 51-62. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a3/
[1] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | Zbl
[2] Ozisik M. N., Orlando H. R. B., Inverse Heat Transfer, Taylor Francis, N.-Y., 2000 | MR
[3] Dehghan M., “Numerical Computation of a Control Function in a Partial Differential Equation”, Applied Mathematics and Computation, 147:2 (2004), 397–408 | DOI | MR | Zbl
[4] Dehghan M., Shakeri F., “Method of Lines Solutions of the Parabolic Inverse Problem with an Overspecification at a Point”, Numerical Algorithms, 50:4 (2009), 417–437 | DOI | MR | Zbl
[5] Dehghan M., “Parameter Determination in a Partial Differential Equation from the Overspecified Data”, Mathematical and Computer Modelling, 41:2–3 (2005), 196–213 | DOI | MR | Zbl
[6] Iskenderova A. D., Akhundov A. Ya., “Inverse Problem for a Linear System of Parabolic Equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR
[7] Kuliev M. A., “A Multidimensional Inverse Problem for a Parabolic Equation in a Bounded Domain”, Nonlinear Boundary Value Problems, 14 (2004), 138–145 | MR | Zbl
[8] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.-Y., 1999 | MR
[9] Pyatkov S. G., Samkov M. L., “On Some Classes of Coefficient Inverse Problems for Parabolic Systems of Equations”, Siberian Advances in Mathematics, 22:4 (2012), 287–302 | DOI | MR | Zbl
[10] Cannon J. R., Yin H.-M., “A Class of Non-Linear Non-Classical Parabolic Equations”, Journal of Differential Equations, 79:2 (1989), 266–288 | DOI | MR | Zbl
[11] Shidfar A., “An Inverse Heat Conduction Problem”, Southeast Asian Bulletin of Mathematics, 26:3 (2003), 503–507 | DOI | MR | Zbl
[12] Ivanchov N. I., Pabyrivska N. V., “On Determination of Two Time-Dependent Coefficients in a Parabolic Equation”, Siberian Mathematical Journal, 43:2 (2002), 323–329 | DOI | MR | Zbl
[13] Ivanchov M., Inverse Problems for Equations of Parabolic Type, WNTL Publishers, Lviv, 2003 | MR
[14] Cannon J. R., “An Inverse Problem of Finding a Parameter in a Semi-linear Heat Equation”, Journal of Mathematical Analysis and Applications, 145:2 (1990), 470–484 | DOI | MR | Zbl
[15] Kozhanov A. I., “Parabolic Equations with an Unknown Time-Dependent Coefficient”, Computational Mathematics and Mathematical Physics, 45:12 (2005), 2085–2101 | MR | Zbl
[16] Ismailov M. I., Kanca F., “Inverse Problem of Finding the Time-Dependent Coefficient of Heat Equation from Integral Overdetermination Condition Data”, Inverse Problems In Science and Engineering, 20:2 (2012), 463–476 | DOI | MR | Zbl
[17] Hussein M. S., Lesnic D., “Simultaneous Determination of Time-Dependent Coefficients and Heat Source”, International Journal for Computational Methods in Engineering Science and Mechanics, 17:5–6 (2016), 401–411 | DOI | MR
[18] Kamynin V. L., “Unique Solvability of the Inverse Problem of Determination of the Leading Coefficient in a Parabolic Equation”, Differential Equations, 47:1 (2011), 91–101 | DOI | MR | Zbl
[19] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher verlag der wissenschaften, Berlin, 1978 | DOI | MR
[20] Denk R., Hieber M., Prüss J., “Optimal $L_{p}-L_{q}$-estimates for Parabolic Boundary Value Problems with Inhomogeneous Data”, Mathematische zeitschrift, 257:1 (2007), 193–224 | DOI | MR | Zbl
[21] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968 | MR
[22] Amann H., “Nonautonomous Parabolic Equations Involving Measures”, Journal of Mathematical Sciences, 130:4 (2005), 4780–4802 | DOI | MR | Zbl
[23] Amann H., “Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary-Value Problems”, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte zur Mathematik, 133, Teubner, Stuttgart, 1993, 9–126 | DOI | MR | Zbl
[24] Grisvard P., “Equations differentielles abstraites”, Annales scientifiques de l'Ecole Normale Superieure, 2:2 (1969), 311–395 | DOI | MR | Zbl
[25] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equations, Academic Press, N.-Y.–London, 1968 | MR | Zbl
[26] Pyatkov S. G., Tsybikov B. N., “On Some Classes of Inverse Problems for Parabolic and Elliptic Equations”, Journal of Evolution Equations, 11:1 (2011), 155–186 | DOI | MR | Zbl
[27] Lieberman G. M., Second Order Parabolic Differential Equations, World Scientific Publishing, Singapore, 1998 | MR
[28] Triebel H., Theory of Function Spaces, Birkhauser Verlag, Basel–Boston–Stuttgart, 1983 | DOI | Zbl