The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 38-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes a method of use of equations in M. F. Shul'gin's form in Lagrangian variables for steady motion stability and stabilization problems of systems with geometric constraints. These equations of motion are free from Lagrange multipliers; we substantiate their advantage for solving stability and stabilization problems. Depended coordinates corresponding to zero solutions of characteristic equation are allocated in the disturbed equations of motion. These variables are necessarily present in systems with geometric constraints for any control method. It is suggested to present equations of motion in Routh variables for finding stabilizing control coefficients; Lagrangian variables are more useful for constructing an estimation system of object state. In addition to previous results, we evaluate the ability to reduce the dimension of measured output signal obtained in conformity with the chosen modelling method. Suppose the state of system is under observations and the dimension of measurement vector is as little as possible. Stabilizing linear control law is fulfilled as feedback by the estimation of state. We can determine uniquely the coefficients of linear control law and estimation system can be determined uniquely by solving of the corresponding linear-quadratic problems for the separated controllable subsystems using the method of N. N. Krasovsky. The valid conclusion about asymptotical stability of the original equations is deduced using the previously proved theorem. This theorem is based on the nonlinear stability theory methods and analysis of limitations imposed by the geometric constraints on the initial disturbances.
Keywords: geometric constraints; redundant coordinates; M. F. Shul'gin's equations; stability; stabilization; steady motion.
@article{VYURU_2017_10_2_a2,
     author = {A. Ya. Krasinskiy and A. N. Ilyina},
     title = {The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {38--50},
     year = {2017},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a2/}
}
TY  - JOUR
AU  - A. Ya. Krasinskiy
AU  - A. N. Ilyina
TI  - The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 38
EP  - 50
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a2/
LA  - en
ID  - VYURU_2017_10_2_a2
ER  - 
%0 Journal Article
%A A. Ya. Krasinskiy
%A A. N. Ilyina
%T The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 38-50
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a2/
%G en
%F VYURU_2017_10_2_a2
A. Ya. Krasinskiy; A. N. Ilyina. The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 38-50. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a2/

[1] Guide on the Theory of Automatic Control, Nauka, M., 1987

[2] Kuntsevich V. M., Lychak M. M., System Synthesis of Automatic Control Sistem by Lyapunov Functions, Nauka, M., 1977

[3] Rumyantsev I. V., About Stability of Stationary Motion of Satellites, USSR Academy of Science, M., 1967

[4] Shul'gin M. F., About Some Differential Equations of Analitical Dynamics and Their Integration, Izdatelstvo SAGU, Tashkent, 1958

[5] Lur'e A. I., Analytical Mechanics, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoy literatury, M., 1961

[6] Lyapunov A. M., Lectures on Theoretical Mechanics, Naukova Dumka, Kiev, 1982 | MR | Zbl

[7] Novozhilov I. V., Zacepin M. F., “The Equations of Motion of Mechanic System with Redundant Variables”, The Miscellany of Scientific and Methodical Articles on Theoretical Mechanics, 18, Vysshaya shkola, M., 1987, 62–66 (in Russian)

[8] Zenkevich S. L., Jushhenko A. S., The Basis of Manipulators Control, Bauman Moscow State Technical University, M., 2004

[9] Krasinskaya E. M., Krasinskiy A. Ya., Obnosov K. B., “About the Development of M. F. Shul'gin Scientific Methods as Applied to the Stability and Stabilization of Mechanotronic Systems with Redundant Coordinates”, The Miscellany of Scientific and Methodical Articles on Theoretical Mechanics, 28, Publishing House of Lomonosov Moscow State University, M., 2012, 169–184 (in Russian)

[10] Krasinskaya E. M., Krasinskiy A. Ya., “Stability and Stabilization of Equilibrium State of Mechanical Systems with Redundant Coordinates”, Scientific Edition of Bauman MSTU: Science and Education, 2013, no. 3, 347–376 (in Russian) | DOI

[11] Lyapunov A. M., Collected Works, v. 2, USSR Academy of Science, M.–L., 1956 | MR

[12] Malkin I. G., The Theory of Dynamic Stability, Nauka, M., 1966, 475–514 | MR

[13] Kamenkov G. V., Selected Proc., v. 2, The Stability and Oscillation of Nonlinear Systems, Nauka, M., 1972 | MR

[14] Krasinskiy A. Ya., Krasinskaya E. M., “On the Research Method of Stabilization Problem in the Assumption on the Incomplete Information About a System State”, The Proceedings of International Conference “Systems Dynamics and Control Processes”, N. N. Krasovskii Institute of Mathematics and Mechanic, Yekaterinburg, 2015, 228–235 (in Russian)

[15] Krasinskiy A. Ya., “About The Research Technique of Stability and Stabilization of Mechanical Systems Non-Isolated Steady Motions”, Selected Proc. of the VIII International Seminar “The Stability and Oscillation of Nonlinear Control Systems”, V. A. Trapeznikov Institute of Control Sciences, M., 2004, 97–103 (in Russian)

[16] Krasinskaya E. M., Krasinskiy A. Ya., “About The Research Technique of Stability and Stabilization of Mechanical Systems with Redundant Coordinates Steady Motions”, The Proceedings of XII All-Russian Conference on the Control Problems, V. A. Trapeznikov Institute of Control Sciences, M., 2014, 1766–1778 (in Russian)

[17] Krasinskaya E. M., Krasinskiy A. Ya., “Modelling of the Dynamics of GBB1005 Ball and Beam Educational Control System as a Controlled Mechanical System with a Redundant Coordinate”, Scientific Edition of Bauman MSTU: Scientific and Education, 2014, no. 1, 282–297 (in Russian) | DOI

[18] Yu W., “Nonlinear PD Regulation for Ball and Beam System”, International Journal of Electrical Engineering Education, 46:1 (2009), 59–73 | DOI

[19] Min-Sung Koo, Ho-Lim Choi, Jong-Tae Lim, “Adaptive Nonlinear Control of a Ball and Beam System Using Centrifugal Force Term”, International Journal of Innovative Computing, Information and Control, 8:9 (2012), 5999–6009

[20] Klokov A. S., Samsonov V. A., “About the Stabilization of Gyroscopically Constrained Systems with Coordinates of Pseudocyclic Trivial Steady Motions”, Journal of Applied Mathematics and Mechanics, 49:2 (1985), 199–202 (in Russian) | DOI | Zbl

[21] Krasinskaya E. M., Krasinskiy A. Ya., “About the Stability and Stabilization of Non-Isolated Steady Motions of Mechanical Systems. Holonomical Systems”, Applied Mathematics and Mechanics, Miscellany of Scientific Works, Ulyanovsk State Technical University, Ul'yanovsk, 2011, 301–322 (in Russian)

[22] Krasinskiy A. Ya., “About Stabilization of Systems with Cyclic Coordinates Steady Motions”, Journal of Applied Mathematics and Mechanics, 56 (1992), 939–950 (In Russian) | DOI | MR

[23] Aiserman M. A., Gantmacher F. R., “Stabilitaet der gleichgewichtslage in einem nichtholonomen system”, Zeitschrift fur angewandte mathematik und mechanik, 37:1–2 (1957), 74–75 | DOI | Zbl

[24] Kalenova V. I., Morozov V. M., Salmina M. A., “For the Problem of Systems with Cyclic Coordinates Steady Motions”, Journal of Applied Mathematics and Mechanics, 53:5 (1989), 707–713 (In Russian) | DOI | MR

[25] Kalman R. E., Falb P. L., Arbib M. A., Topics in Mathematical System Theory, McGraw-Hill, N.Y., 1969, 400 pp. [Р. Калман, П. Фалб, М. Арбиб, Очерки по математической теории систем, УРСС, М., 2010] | MR | Zbl

[26] Gabasov R., Kirillova F. M., Qualitative Theory of Optimum Processes, Nauka, M., 1971 | MR