Multipoint initial-final value problem for the model of Davis with additive white noise
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 144-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of the free surface of the filtering fluid in a reservoir of limited power is modeled by the Davis equation with homogeneous Dirichlet conditions. Depending on the nature of the free term describing the internal source of the liquid, the model will be deterministic or stochastic. The deterministic model has been studied in various aspects by many researchers with different initial (initial-final value conditions). The stochastic model is studied for the first time. The main result is the proof of the unique solvability of the evolutionary model with an additive white noise and a multipoint initial-final value condition.
Keywords: white noise; Wiener K-process; Davis model; multipoint initial-final value problem; stochastic model.
@article{VYURU_2017_10_2_a11,
     author = {A. S. Konkina},
     title = {Multipoint initial-final value problem for the model of {Davis} with additive white noise},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {144--159},
     year = {2017},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/}
}
TY  - JOUR
AU  - A. S. Konkina
TI  - Multipoint initial-final value problem for the model of Davis with additive white noise
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 144
EP  - 159
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/
LA  - en
ID  - VYURU_2017_10_2_a11
ER  - 
%0 Journal Article
%A A. S. Konkina
%T Multipoint initial-final value problem for the model of Davis with additive white noise
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 144-159
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/
%G en
%F VYURU_2017_10_2_a11
A. S. Konkina. Multipoint initial-final value problem for the model of Davis with additive white noise. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 144-159. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/

[1] Zagrebina S. A., Konkina A. S., “The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:1 (2015), 132–136 | DOI | Zbl

[2] Zagrebina S. A., Soldatova E. A., Sviridyuk G. A., “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Semigroups of Operators – Theory and Applications (Bedlewo, Poland), Springer, 2013, 317–325 | DOI | MR

[3] Melnikova I. V., Filinkov A. I., Alshansky M. A., “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[4] Favini A., Sviridyuk G. A., Manakova N. A., “Linear Sobolev Type Equations with Relatively $p$-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl

[5] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003 | DOI | MR | Zbl

[6] Zagrebina S. A., “Multipoint Initial-Final Value Problem for the Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 | DOI | Zbl