@article{VYURU_2017_10_2_a11,
author = {A. S. Konkina},
title = {Multipoint initial-final value problem for the model of {Davis} with additive white noise},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {144--159},
year = {2017},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/}
}
TY - JOUR AU - A. S. Konkina TI - Multipoint initial-final value problem for the model of Davis with additive white noise JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 144 EP - 159 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/ LA - en ID - VYURU_2017_10_2_a11 ER -
%0 Journal Article %A A. S. Konkina %T Multipoint initial-final value problem for the model of Davis with additive white noise %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 144-159 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/ %G en %F VYURU_2017_10_2_a11
A. S. Konkina. Multipoint initial-final value problem for the model of Davis with additive white noise. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 144-159. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a11/
[1] Zagrebina S. A., Konkina A. S., “The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:1 (2015), 132–136 | DOI | Zbl
[2] Zagrebina S. A., Soldatova E. A., Sviridyuk G. A., “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Semigroups of Operators – Theory and Applications (Bedlewo, Poland), Springer, 2013, 317–325 | DOI | MR
[3] Melnikova I. V., Filinkov A. I., Alshansky M. A., “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl
[4] Favini A., Sviridyuk G. A., Manakova N. A., “Linear Sobolev Type Equations with Relatively $p$-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl
[5] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003 | DOI | MR | Zbl
[6] Zagrebina S. A., “Multipoint Initial-Final Value Problem for the Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 | DOI | Zbl