Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 137-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs representing constructions made of thin elastic rods. The first paragraph describes the developed algorithm for numerical solution of the Boussinesq–Love equation with initial conditions and boundary conditions in the vertices. The block diagram of the algorithm is given and described. The result of computation experiment is given in the second paragraph.
Keywords: geometrical graph; the Sobolev type model; the Sturm–Liouville problem; the Boussinesq–Love mathematical model.
@article{VYURU_2017_10_2_a10,
     author = {A. A. Zamyshlyaeva and A. V. Lut},
     title = {Numerical investigation of the {Boussinesq{\textendash}Love} mathematical models on geometrical graphs},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {137--143},
     year = {2017},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a10/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - A. V. Lut
TI  - Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 137
EP  - 143
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a10/
LA  - en
ID  - VYURU_2017_10_2_a10
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A A. V. Lut
%T Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 137-143
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a10/
%G en
%F VYURU_2017_10_2_a10
A. A. Zamyshlyaeva; A. V. Lut. Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 2, pp. 137-143. http://geodesic.mathdoc.fr/item/VYURU_2017_10_2_a10/

[1] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, University Press, Cambridge, 1927 ; A. Lyav, Matematicheskaya teoriya uprugosti, ONTI, M.–L., 1935, 674 pp. | MR | Zbl | MR

[2] Uizem G., Linear and Nonlinear Waves, Mir, M., 1977

[3] Bayazitova A. A., “The Sturm–Liouville Problem on Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16(192):5 (2010), 4–10 (in Russian) | Zbl

[4] Zamyshlyaeva A. A., Sviridyuk G. A., “Nonclassical Equations of Mathematical Physics. Linear Sobolev Type Equations of Higher Order”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 8:4 (2016), 5–16 | DOI

[5] Zamyshlyaeva A. A., “On Algorithm of Numerical Modelling of the Boussinesq–Love Waves”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 13:4 (2013), 24–29 (in Russian) | MR

[6] Zamyshlyaeva A. A., Surovtsev S. V., “Finding of a Numerical Solution to the Cauchy–Dirichlet Problem for Boussinesq–Love Equation Using Finite Difference Method”, Bulletin of the Samara State University. Natural Science Series, 2015, no. 6, 76–81 (in Russian)

[7] Zamyshlyaeva A. A., Lut A. V., “Boussinesq–Love Mathematical Model on a Geometrical Graph”, Journal of Computational and Engineering Mathematics, 2:2 (2015), 82–97 | DOI | MR | Zbl

[8] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest Order Derivative, Marcel Dekker, N.Y.–Basel–Hong Kong, 2003 | MR | Zbl

[9] Showalter R. E., Hilbert Space Methods for Partial Differential Equations, Pitman Publ., London, 1977 | MR | Zbl

[10] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, Berlin–N.Y., 2011 | DOI | MR | Zbl