@article{VYURU_2017_10_1_a8,
author = {R. I. Parovik},
title = {Mathematical modelling of hereditarity {Airy} oscillator with friction},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {138--148},
year = {2017},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a8/}
}
TY - JOUR AU - R. I. Parovik TI - Mathematical modelling of hereditarity Airy oscillator with friction JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 138 EP - 148 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a8/ LA - ru ID - VYURU_2017_10_1_a8 ER -
%0 Journal Article %A R. I. Parovik %T Mathematical modelling of hereditarity Airy oscillator with friction %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 138-148 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a8/ %G ru %F VYURU_2017_10_1_a8
R. I. Parovik. Mathematical modelling of hereditarity Airy oscillator with friction. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 138-148. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a8/
[1] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, v. I, Background and Theory, Higher Education Press, Beijing; Springer-Verlag, Berlin, 2013, 373 pp. | DOI | MR | Zbl
[2] Volterra V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover, N.Y., 1959, 304 pp. | MR | Zbl
[3] G. B. Airy, “On the Intensity of Light in the Neighbourhood of a Caustic”, Transactions of the Cambridge Philosophical Society, 6 (1838), 379–402
[4] Honina S. N., Volotovskij S. G., “Mirror Laser Airy Beams”, Computer Optics, 34:2 (2014), 203–213 (in Russian)
[5] K. B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, London, 1974, 240 pp. | MR | Zbl
[6] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differntial Equations, A Wiley-Interscience Publication, N.-Y., 1993, 384 pp. | MR
[7] Parovik R. I., Mathematical Modelling of Linear Oscillators Hereditarity, Kamchatskiy Gosudarstvennyy Universitet Imeni Vitusa Beringa, Petropavlovsk-Kamchatskiy, 2015, 178 pp.
[8] Parovik R. I., “Cauchy Problem of Generalized Airy Equation”, Reports Adyghe (Circassian) International Academy of Sciences, 16:3 (2014), 64–69 (in Russian)
[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | DOI | MR | Zbl
[10] F. Mainardi, “Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena”, Chaos, Solitons Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl
[11] Afanas'ev V. V., Danilaev M. P., Pol'skij Yu. E., “Stabilization of Fractal Oscillator Inertial Effects”, Technical Physics Letters, 36:7 (2010), 1–6 (in Russian)
[12] I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Higher Education Press, Beijing; Springer-Verlag, Berlin, 2011, 218 pp. | DOI | Zbl
[13] M. S. Tavazoei, M. Haeri, “Chaotic Attractors in Incommensurate Fractional Order Systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628–2637 | DOI | MR | Zbl
[14] Y. A. Rossikhin, M. V. Shitikova, “Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results”, Applied Mechanics Reviews, 63:1 (2010), 010801 | DOI
[15] Samarskij A. A., Gulin A. V., The Stability of Difference Schemes, Nauka, M., 1973, 415 pp.
[16] Parovik R. I., “Numerical Analysis Some Oscillation Equations with Fractional Order Derivatives”, Bulletin KRASEC. Physical and Mathematical Sciences, 9:2 (2014), 34–38 | DOI
[17] Y. Xu, V. Suat Ertürk, “A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712 | MR | Zbl