Stationary points of the “reaction-diffusion” equation and transitions to stable states
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 125-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Of concern is a stationary “reaction-diffusion” equation with cubic non-linearity is Neumann boundary conditions and fixed average value of the desired bifurcating solutions. A method of approximate calculation of bifurca-ting solutions for small and finite values of supercritical parameter increment are presented. Computing is based on the Lyapunov–Schmidt reducing procedure and is leaning on key functions Ritz' approximation of the set of eigenfunctions (modes) of main linear part of gradient energy functional. A technique of evaluating of a functional space size, where Lyapunov–Schmidt reduction can be applied is performed. In case of local reduction the main part of the key function has been found and asymptotic presentation of bifurcating solutions for small supercritical increment of bifurcation parameter is calculated. The relation between solutions search procedures for “reaction-diffusion” equations and Cahn–Hilliard equation (with extended Neumann boundary conditions) is also performed. Graphs are presented.
Keywords: continuously differentiable functional; extremal; bifurcation; Lyapunov–Shmidt method.
@article{VYURU_2017_10_1_a7,
     author = {A. S. Korotkih},
     title = {Stationary points of the {\textquotedblleft}reaction-diffusion{\textquotedblright} equation and transitions to stable states},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {125--137},
     year = {2017},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a7/}
}
TY  - JOUR
AU  - A. S. Korotkih
TI  - Stationary points of the “reaction-diffusion” equation and transitions to stable states
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 125
EP  - 137
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a7/
LA  - ru
ID  - VYURU_2017_10_1_a7
ER  - 
%0 Journal Article
%A A. S. Korotkih
%T Stationary points of the “reaction-diffusion” equation and transitions to stable states
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 125-137
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a7/
%G ru
%F VYURU_2017_10_1_a7
A. S. Korotkih. Stationary points of the “reaction-diffusion” equation and transitions to stable states. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a7/

[1] Mikhlin S. G., Variational Methods in Mathematical Physics, Pergamon Press, Oxford–London–Edinburgh–N.Y.–Paris–Frankfurt, 1964, 584 pp. | DOI | Zbl

[2] Darinskii B. M., Sapronov Y. I., Tsarev S. L., “Bifurcations of Extremals Fredholm Functional”, Journal of Mathematical Science, 145:6 (2007), 5311–5453 | DOI | MR | Zbl

[3] Murray J. D., Lectures on Nonlinear Differential-Equation. Models in Biology About the Models, Clarendon Press, Oxford, 1977

[4] Hassard B. D., Kazarinoff N. D., Wan Y.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981, 320 pp. | MR | Zbl

[5] Kazarnikov A. V., Revina S. V., “The Onset of Auto-Oscillations in Raileigh Systems with Diffusion”, Bulletin of South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:2 (2016), 16–28 (in Russian) | DOI

[6] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl

[7] Sviridyuk G. A., Zagrebina S. A., “On the Verigin Problem for the Generalized Boussinesq Filtration Equation”, Russian Mathematics (Izvestiya VUZ. Matematika), 47:7 (2003), 55–59 | MR | Zbl

[8] Zagrebina S. A., “On the Showalter–Sidorov Problem”, Russian Mathematics (Izvestiya VUZ. Matematika), 51:3 (2007), 19–24 | DOI | MR | Zbl

[9] Kostina T. I., “Nonlocal Calculation of Key Functions in the Problem of Periodic Solutions of Variational Equations”, Proceeding of Voronezh State University. Series: Physics. Mathematics, 2011, no. 1, 181–186 (in Russian)

[10] Sapronov Yu. I., “Modelling Liquid Flows in Diffusers by Reduced”, Bulletin of South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 74–86 (in Russian) | DOI | Zbl

[11] Krasnosel'skij M. A., Krejn S. G., “The Iterative Process Minimal Residuals”, Sbornik: Mathematics, 31(73):2 (1952), 315–334 (in Russian) | Zbl

[12] Lemeshko A. A., “Uniform Convergence with Derivatives Galerkin Approximations to the Solutions of Equations with Parameters”, Mathematical Models and Operator Equations, 2 (2003), 94–103 (in Russian)

[13] Lemeshko A. A., “Uniform Convergence of Newton's Approximations to Solutions of Equations with Parameters”, Proceedings of Young Scientists Mathematical Faculty of Voronezh State University, 2003, 74–83 (in Russian)

[14] Kovaleva M. I., Kostina T. I., Sapronov Y. I., The Envelope Curve, the Point of Return and Bifurcation Analysis of Nonlinear Problems, Military Training and Research Center of the Air Force “Air Force Academy named after Professor N. E. Zhukovsky and Y. A. Gagarin”, Voronezh, 2015, 242 pp.