Real sectorial operators
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 97-112
Voir la notice de l'article provenant de la source Math-Net.Ru
Sectorial operators that act in complex Banach spaces and map real subspaces into themselves should be called real sectorial operators. These operators have already been used implicitly in the study of various diffusion equations. Meanwhile, in the Łojasiewicz–Simon theory which provides longtime convergence of solutions to stationary solutions, the real valued Lyapunov functions play an important role. In order to make general methods for studying longtime convergence problems on the basis of the Łojasiewicz–Simon theory, it may therefore be meaningful to give an explicit definition for these real sectorial operators and to show their basic properties that are inherited from those of complex sectorial operators.
Keywords:
sectorial operators; fractional powers of operators; differential operators.
@article{VYURU_2017_10_1_a5,
author = {A. Yagi},
title = {Real sectorial operators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {97--112},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a5/}
}
TY - JOUR AU - A. Yagi TI - Real sectorial operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 97 EP - 112 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a5/ LA - en ID - VYURU_2017_10_1_a5 ER -
A. Yagi. Real sectorial operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 97-112. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a5/