Regularity results and solution semigroups for retarded functional differential equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 48-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the solutions of the retarded functional differential equations in a Banach space, whose existence and uniqueness are established in paper of A. Favini and H. Tanabe, have some further regularity properties if the initial data and the inhomogeneous term satisfy some smootheness assumptions. Some results on the solution semigroups analogous to the one of G. Di Blasio, K. Kunisch and E. Sinestrari and to the one of E. Sinestrari are also obtained.
Keywords: retarded functional differential equation; regularity of solutions; analytic semigroup; solution semigroup; $C_0$-semigroup; infinitesimal generator.
@article{VYURU_2017_10_1_a3,
     author = {A. Favini and H. Tanabe},
     title = {Regularity results and solution semigroups for retarded functional differential equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {48--69},
     year = {2017},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a3/}
}
TY  - JOUR
AU  - A. Favini
AU  - H. Tanabe
TI  - Regularity results and solution semigroups for retarded functional differential equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 48
EP  - 69
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a3/
LA  - en
ID  - VYURU_2017_10_1_a3
ER  - 
%0 Journal Article
%A A. Favini
%A H. Tanabe
%T Regularity results and solution semigroups for retarded functional differential equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 48-69
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a3/
%G en
%F VYURU_2017_10_1_a3
A. Favini; H. Tanabe. Regularity results and solution semigroups for retarded functional differential equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 48-69. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a3/

[1] Di Blasio G., Lorenzi A., “Identification Problems for Integro-Differential Delay Equations”, Differential Integral Equations, 16:11 (2003), 1385–1408 | MR | Zbl

[2] Favini A., Tanabe H., “Identification Problems for Integrodifferential Equations with Delay: an Improvement of the Results from G. Di Blasio and A. Lorenzi”, Funkcialaj Ekvacioj (to appear)

[3] Di Blasio G., Kunisch K., Sinestrari E., “$L^2$-regularity for Parabolic Partial Integrodifferential Equations with Delay in the Highest-Order Derivatives”, Journal of Mathematical Analysis and Applications, 102:1 (1984), 38–57 | DOI | MR | Zbl

[4] Sinestrari E., “On a Class of Retarded Partial Differential Equations”, Mathematische Zeitschrift, 186 (1984), 223–246 | DOI | MR | Zbl

[5] Di Blasio G., “Linear Parabolic Evolution Equations in $L^p$-Spaces”, Annali di Matematica Pura ed Applicata (IV), 138:1 (1984), 55–104 | DOI | MR | Zbl

[6] Seeley R., “Interpolation in $L^p$ with Boundary Conditions”, Studia Matematica, 44 (1972), 47–60 | MR | Zbl

[7] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam–N.Y.–Oxford, 1978 | MR | Zbl