Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the oscillatory properties of second order non-linear dynamic equation with integro forcing term on an arbitrary time scales. We reduce our original dynamic equation into an alternate equation by introducing a function of forward jump operator. To study oscillations we establish some crucial Lemmas and employ generalized Riccati transformation technique which transforms our second order dynamic equation into the first order dynamic equation on an arbitrary time scales. These results also guarantee that the solution of our equation oscillates. Furthermore, we establish the Kamenev-type oscillation criteria of our system. At the end, we consider a second order dynamic equation on time scales with deviating argument and compare it with our result which gives the sufficient conditions of oscillation of it.
Mots-clés : time scale; dynamic equation; Riccati transformation technique; oscillation.
@article{VYURU_2017_10_1_a2,
     author = {S. S. Negi and S. Abbas and M. Malik},
     title = {Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {35--47},
     year = {2017},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/}
}
TY  - JOUR
AU  - S. S. Negi
AU  - S. Abbas
AU  - M. Malik
TI  - Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 35
EP  - 47
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/
LA  - en
ID  - VYURU_2017_10_1_a2
ER  - 
%0 Journal Article
%A S. S. Negi
%A S. Abbas
%A M. Malik
%T Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 35-47
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/
%G en
%F VYURU_2017_10_1_a2
S. S. Negi; S. Abbas; M. Malik. Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/

[1] Agarwal R. P., Difference Equations and Inequalities, Marcel Dekker, N.Y., 1992 | MR | Zbl

[2] Agarwal R. P., Wong P. J. Y., Advanced Topics in Difference Equations, Springer Netherlands, Dordrecht, 1997 | DOI | MR

[3] Jurang Y., “Oscillation Theorems for Second Order Linear Differential Equations with Damping”, Proceeding of American Mathematical Society, 98:2 (1986), 276–282 | DOI | MR | Zbl

[4] Hilger S., “Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus”, Results in Mathematics, 18:1–2 (1990), 18–56 | DOI | MR | Zbl

[5] Bohner M., Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001 | DOI | MR | Zbl

[6] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003 | DOI | MR | Zbl

[7] Atici F. M., Biles D. C., Lebedinsky A., “An Application of Time Scales to Economics”, Mathematical and Computer Modelling, 43:7–8 (2006), 718–726 | DOI | MR | Zbl

[8] Christiansen F. B., Fenchel T. M., “Theories of Populations in Biological Communities”, Lecture Notes in Ecological Studies, 20, Springer-Verlag, Berlin, 1977, 1–36 | DOI

[9] Agarwal R. P., O'Regan D., Saker S. H., “Oscillation Criteria for Nonlinear Perturbed Dynamic Equations of Second-Order on Time Scales”, Journal of Applied Mathematics and Computing, 20:1–2 (2006), 133–147 | DOI | MR | Zbl

[10] Bohner M., Saker S. H., “Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales”, Rocky Mountain Journal of Mathematics, 34:4 (2004), 1239–1254 | DOI | MR | Zbl

[11] Chen W., Han Z., Sun S., Li T., “Oscillation Behavior of a Class of Second-Order Dynamic Equations with Damping on Time Scales”, Discrete Dynamic in Nature and Society, 2010, 907130, 15 pp. | MR | Zbl

[12] Da-Xue C., Guang-Hui L., “Oscillation Criteria for Non-Linear Second-Order Damped Delay”, Dynamic Equations on Time Scales, World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 4:1 (2010), 185–192

[13] Erbe L., Peterson A., Saker S. H., “Oscillation Criteria for Second-Order Non-Linear Dynamic Equations on Time Scales”, Journal of London Mathematical Society, 67:3 (2003), 701–714 | DOI | MR | Zbl

[14] Saker S. H., Agarwal R. P., O'Regan D., “Oscillation of Second-Order Damped Dynamic Equations on Time Scales”, Journal of Mathematical Analysis and Applications, 330:2 (2007), 1317–1337 | DOI | MR | Zbl

[15] Erbe L., Hassan T. S., Peterson A., “Oscillation Criteria for Non-Linear Damped Dynamic Equations on Time Scales”, Applied Mathematics and Computation, 203:1 (2008), 343–357 | DOI | MR | Zbl

[16] Saker S. H., “Oscillation of Second-Order Non-Linear Neutral Delay Dynamic Equations on Time Scales”, Journal of Computational and Applied Mathematics, 187:2 (2006), 123–141 | DOI | MR | Zbl

[17] Agacik Z., “On Oscillation and Non-Oscillation of Second-Order Dynamic Equations”, Applied Mathematics Letters, 22:1 (2009), 136–141 | DOI | MR

[18] Guseinov G. Sh., Kaymakcalan B., “On a Disconjugacy Criterion for Second Order Dynamic Equations on Time Scales”, Journal of Computational Applied Mathematics, 141:1–2 (2002), 187–196 | DOI | MR | Zbl