@article{VYURU_2017_10_1_a2,
author = {S. S. Negi and S. Abbas and M. Malik},
title = {Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {35--47},
year = {2017},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/}
}
TY - JOUR AU - S. S. Negi AU - S. Abbas AU - M. Malik TI - Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 35 EP - 47 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/ LA - en ID - VYURU_2017_10_1_a2 ER -
%0 Journal Article %A S. S. Negi %A S. Abbas %A M. Malik %T Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 35-47 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/ %G en %F VYURU_2017_10_1_a2
S. S. Negi; S. Abbas; M. Malik. Oscillation criteria of second-order non-linear dynamic equations with integro forcing term on time scales. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a2/
[1] Agarwal R. P., Difference Equations and Inequalities, Marcel Dekker, N.Y., 1992 | MR | Zbl
[2] Agarwal R. P., Wong P. J. Y., Advanced Topics in Difference Equations, Springer Netherlands, Dordrecht, 1997 | DOI | MR
[3] Jurang Y., “Oscillation Theorems for Second Order Linear Differential Equations with Damping”, Proceeding of American Mathematical Society, 98:2 (1986), 276–282 | DOI | MR | Zbl
[4] Hilger S., “Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus”, Results in Mathematics, 18:1–2 (1990), 18–56 | DOI | MR | Zbl
[5] Bohner M., Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001 | DOI | MR | Zbl
[6] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003 | DOI | MR | Zbl
[7] Atici F. M., Biles D. C., Lebedinsky A., “An Application of Time Scales to Economics”, Mathematical and Computer Modelling, 43:7–8 (2006), 718–726 | DOI | MR | Zbl
[8] Christiansen F. B., Fenchel T. M., “Theories of Populations in Biological Communities”, Lecture Notes in Ecological Studies, 20, Springer-Verlag, Berlin, 1977, 1–36 | DOI
[9] Agarwal R. P., O'Regan D., Saker S. H., “Oscillation Criteria for Nonlinear Perturbed Dynamic Equations of Second-Order on Time Scales”, Journal of Applied Mathematics and Computing, 20:1–2 (2006), 133–147 | DOI | MR | Zbl
[10] Bohner M., Saker S. H., “Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales”, Rocky Mountain Journal of Mathematics, 34:4 (2004), 1239–1254 | DOI | MR | Zbl
[11] Chen W., Han Z., Sun S., Li T., “Oscillation Behavior of a Class of Second-Order Dynamic Equations with Damping on Time Scales”, Discrete Dynamic in Nature and Society, 2010, 907130, 15 pp. | MR | Zbl
[12] Da-Xue C., Guang-Hui L., “Oscillation Criteria for Non-Linear Second-Order Damped Delay”, Dynamic Equations on Time Scales, World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 4:1 (2010), 185–192
[13] Erbe L., Peterson A., Saker S. H., “Oscillation Criteria for Second-Order Non-Linear Dynamic Equations on Time Scales”, Journal of London Mathematical Society, 67:3 (2003), 701–714 | DOI | MR | Zbl
[14] Saker S. H., Agarwal R. P., O'Regan D., “Oscillation of Second-Order Damped Dynamic Equations on Time Scales”, Journal of Mathematical Analysis and Applications, 330:2 (2007), 1317–1337 | DOI | MR | Zbl
[15] Erbe L., Hassan T. S., Peterson A., “Oscillation Criteria for Non-Linear Damped Dynamic Equations on Time Scales”, Applied Mathematics and Computation, 203:1 (2008), 343–357 | DOI | MR | Zbl
[16] Saker S. H., “Oscillation of Second-Order Non-Linear Neutral Delay Dynamic Equations on Time Scales”, Journal of Computational and Applied Mathematics, 187:2 (2006), 123–141 | DOI | MR | Zbl
[17] Agacik Z., “On Oscillation and Non-Oscillation of Second-Order Dynamic Equations”, Applied Mathematics Letters, 22:1 (2009), 136–141 | DOI | MR
[18] Guseinov G. Sh., Kaymakcalan B., “On a Disconjugacy Criterion for Second Order Dynamic Equations on Time Scales”, Journal of Computational Applied Mathematics, 141:1–2 (2002), 187–196 | DOI | MR | Zbl