@article{VYURU_2017_10_1_a0,
author = {P. Colli and G. Gilardi and J. Sprekels},
title = {Recent results on the {Cahn{\textendash}Hilliard} equation with dynamic boundary conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--21},
year = {2017},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/}
}
TY - JOUR AU - P. Colli AU - G. Gilardi AU - J. Sprekels TI - Recent results on the Cahn–Hilliard equation with dynamic boundary conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2017 SP - 5 EP - 21 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/ LA - en ID - VYURU_2017_10_1_a0 ER -
%0 Journal Article %A P. Colli %A G. Gilardi %A J. Sprekels %T Recent results on the Cahn–Hilliard equation with dynamic boundary conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2017 %P 5-21 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/ %G en %F VYURU_2017_10_1_a0
P. Colli; G. Gilardi; J. Sprekels. Recent results on the Cahn–Hilliard equation with dynamic boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/
[1] Bai F., Elliott C. M., Gardiner A., Spence A., Stuart A. M., “The Viscous Cahn–Hilliard Equation. Part I: Computations”, Nonlinearity, 8 (1995), 131–160 | DOI | MR | Zbl
[2] Cahn J. W., Hilliard J. E., “Free Energy of a Nonuniform System I. Interfacial Free Energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI
[3] Elliott C. M., Stuart A. M., “Viscous Cahn–Hilliard Equation II. Analysis”, Journal of Differential Equations, 128:2 (1996), 387–414 | DOI | MR | Zbl
[4] Elliott C. M., Zheng S., “On the Cahn–Hilliard Equation”, Archive Rational Mechanics and Analysis, 96:4 (1986), 339–357 | DOI | MR | Zbl
[5] Novick-Cohen A., “On the Viscous Cahn–Hilliard Equation”, Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), Oxford Science Publishing, Oxford Univesity Press, N.Y., 1988, 329–342 | MR
[6] Cherfils L., Miranville A., Zelik S., “The Cahn–Hilliard Equation with Logarithmic Potentials”, Milan Journal of Mathematics, 79:2 (2011), 561–596 | DOI | MR | Zbl
[7] Colli P., Gilardi G., Podio-Guidugli P., Sprekels J., “Well-Posedness and Long-Time Behaviour for a Nonstandard Viscous Cahn–Hilliard System”, Society for Industrial and Applied Mathematics Journal on Applied Mathematics, 71:6 (2011), 1849–1870 | DOI | MR | Zbl
[8] Fried E., Gurtin M. E., “Continuum Theory of Thermally Induced Phase Transitions Based on an Order Parameter”, Physica D: Nonlinear Phenomena, 68:3–4 (1993), 326–343 | DOI | MR | Zbl
[9] Gurtin M., “Generalized Ginzburg–Landau and Cahn–Hilliard Equations Based on a Microforce Balance”, Physica D: Nonlinear Phenomena, 92:3–4 (1996), 178–192 | DOI | MR | Zbl
[10] Podio-Guidugli P., “Models of Phase Segregation and Diffusion of Atomic Species on a Lattice”, Ricerche di Matematica, 55:1 (2006), 105–118 | DOI | MR | Zbl
[11] Gilardi G., Miranville A., Schimperna G., “On the Cahn–Hilliard Equation with Irregular Potentials and Dynamic Boundary Conditions”, Communications on Pure Applied Analysis, 8:3 (2009), 881–912 | DOI | MR | Zbl
[12] Chill R., Fašangová E., Prüss J., “Convergence to Steady States of Solutions of the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Mathematische Nachrichten, 279:13–14 (2006), 1448–1462 | DOI | MR | Zbl
[13] Miranville A., Zelik S., “Robust Exponential Attractors for Cahn–Hilliard Type Equations with Singular Potentials”, Mathematical Methods in the Applied Sciences, 27:5 (2004), 545–582 | DOI | MR | Zbl
[14] Prüss J., Racke R., Zheng S., “Maximal Regularity and Asymptotic Behavior of Solutions for the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Annali di Matematica Pura ed Applicata, 185:4 (2006), 627–648 | DOI | MR | Zbl
[15] Racke R., Zheng S., “The Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Advances in Differential Equations, 8:1 (2003), 83–110 | MR | Zbl
[16] Wu H., Zheng S., “Convergence to Equilibrium for the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Journal of Differential Equations, 204 (2004), 511–531 | DOI | MR | Zbl
[17] Gilardi G., Miranville A., Schimperna G., “Long Time Behavior of the Cahn–Hilliard Equation with Irregular Potentials and Dynamic Boundary Conditions”, Chinese Annal of Mathematics, Series B, 31:5 (2010), 679–712 | DOI | MR | Zbl
[18] Calatroni L., Colli P., “Global Solution to the Allen–Cahn Equation with Singular Potentials and Dynamic Boundary Conditions”, Nonlinear Analysis: Theory, Methods and Applications, 79 (2013), 12–27 | DOI | MR | Zbl
[19] Colli P., Sprekels J., “Optimal Control of an Allen–Cahn Equation with Singular Potentials and Dynamic Boundary Condition”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:1 (2015), 213–234 | DOI | MR | Zbl
[20] Colli P., Farshbaf-Shaker M. H., Sprekels J., “A Deep Quench Approach to the Optimal Control of an Allen–Cahn Equation with Dynamic Boundary Conditions and Double Obstacles”, Applied Mathematics and Optimization, 71:1 (2015), 1–24 | DOI | MR | Zbl
[21] Colli P., Gilardi G., Sprekels J., “On the Cahn–Hilliard Equation with Dynamic Boundary Conditions and a Dominating Boundary Potential”, Journal of Mathematical Analysis and Applications, 419:2 (2014), 972–994 | DOI | MR | Zbl
[22] Colli P., Gilardi G., Sprekels J., “A Boundary Control Problem for the Viscous Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Applied Mathematics and Optimization, 73:2 (2016), 195–225 | DOI | MR | Zbl
[23] Colli P., Gilardi G., Sprekels J., “A Boundary Control Problem for the Pure Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Advances in Nonlinear Analysis, 4:4 (2015), 311–325 | DOI | MR | Zbl
[24] Colli P., Farshbaf-Shaker M. H., Gilardi G., Sprekels J., “Optimal Boundary Control of a Viscous Cahn–Hilliard System with Dynamic Boundary Condition and Double Obstacle Potentials”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:4 (2015), 2696–2721 | DOI | MR | Zbl
[25] Colli P., Fukao T., “Cahn–Hilliard Equation with Dynamic Boundary Conditions and Mass Constraint on the Boundary”, Journal of Mathematical Analysis and Applications, 429:2 (2015), 1190–1213 | DOI | MR | Zbl
[26] Colli P., Fukao T., “Equation and Dynamic Boundary Condition of Cahn–Hilliard Type with Singular Potentials”, Nonlinear Analysis: Theory, Methods and Applications, 127 (2015), 413–433 | DOI | MR | Zbl
[27] Hintermüller M., Wegner D., “Distributed Optimal Control of the Cahn–Hilliard System Including the Case of a Double-Obstacle Homogeneous Free Energy Density”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 50:1 (2012), 388–418 | DOI | MR | Zbl
[28] Wang Q.-F., Nakagiri S.-I., “Optimal Control of Distributed Parameter System Given by Cahn–Hilliard Equation”, Nonlinear Functional Analysis and Applications, 19 (2014), 19–33 | Zbl
[29] Zheng J., Wang Y., “Optimal Control Problem for Cahn–Hilliard Equations with State Constraint”, Journal of Dynamical and Control Systems, 21:2 (2015), 257–272 | DOI | MR | Zbl
[30] Zhao X. P., Liu C. C., “Optimal Control of the Convective Cahn–Hilliard Equation”, Applicable Analysis, 92:5 (2013), 1028–1045 | DOI | MR | Zbl
[31] Zhao X. P., Liu C. C., “Optimal Control for the Convective Cahn–Hilliard Equation in 2D Case”, Applied Mathematics and Optimization, 70:1 (2014), 61–82 | DOI | MR | Zbl
[32] Rocca E., Sprekels J., “Optimal Distributed Control of a Nonlocal Convective Cahn–Hilliard Equation by the Velocity in Three Dimensions”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:3 (2015), 1654–1680 | DOI | MR | Zbl
[33] Colli P., Farshbaf-Shaker M. H., Gilardi G., Sprekels J., “Second-Order Analysis of a Boundary Control Problem for the Viscous Cahn–Hilliard Equation with Dynamic Boundary Condition”, Annals Academy of Romanian Scientists. Series on Mathematics and its Applications, 7:1 (2015), 41–66 | MR | Zbl
[34] Hintermüller M., Wegner D., “Optimal Control of a Semidiscrete Cahn–Hilliard–Navier–Stokes System”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 52:1 (2014), 747–772 | DOI | MR | Zbl
[35] Wang Q.-F., “Optimal Distributed Control of Nonlinear Cahn–Hilliard Systems with Computational Realization”, Journal of Mathematical Sciences, 177:3 (2011), 440–458 | DOI | MR | Zbl
[36] Brezis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973 | MR