Recent results on the Cahn–Hilliard equation with dynamic boundary conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pure or viscous Cahn–Hilliard equation with possibly singular potentials and dynamic boundary conditions is considered and the well-posedness of the related initial value problem is discussed. Then, a boundary control problem for the viscous Cahn–Hilliard system is studied and first order necessary conditions for optimality are shown. Moreover, the same boundary control problem is addressed for the pure Cahn–Hilliard system, by investigating it and passing to the limit in the analogous results for the viscous Cahn–Hilliard system as the viscosity coefficient tends to zero.
Keywords: Cahn–Hilliard equation; dynamic boundary conditions; phase separation; well-posedness; boundary control problem; optimality conditions.
@article{VYURU_2017_10_1_a0,
     author = {P. Colli and G. Gilardi and J. Sprekels},
     title = {Recent results on the {Cahn{\textendash}Hilliard} equation with dynamic boundary conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--21},
     year = {2017},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/}
}
TY  - JOUR
AU  - P. Colli
AU  - G. Gilardi
AU  - J. Sprekels
TI  - Recent results on the Cahn–Hilliard equation with dynamic boundary conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2017
SP  - 5
EP  - 21
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/
LA  - en
ID  - VYURU_2017_10_1_a0
ER  - 
%0 Journal Article
%A P. Colli
%A G. Gilardi
%A J. Sprekels
%T Recent results on the Cahn–Hilliard equation with dynamic boundary conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2017
%P 5-21
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/
%G en
%F VYURU_2017_10_1_a0
P. Colli; G. Gilardi; J. Sprekels. Recent results on the Cahn–Hilliard equation with dynamic boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 10 (2017) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/VYURU_2017_10_1_a0/

[1] Bai F., Elliott C. M., Gardiner A., Spence A., Stuart A. M., “The Viscous Cahn–Hilliard Equation. Part I: Computations”, Nonlinearity, 8 (1995), 131–160 | DOI | MR | Zbl

[2] Cahn J. W., Hilliard J. E., “Free Energy of a Nonuniform System I. Interfacial Free Energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI

[3] Elliott C. M., Stuart A. M., “Viscous Cahn–Hilliard Equation II. Analysis”, Journal of Differential Equations, 128:2 (1996), 387–414 | DOI | MR | Zbl

[4] Elliott C. M., Zheng S., “On the Cahn–Hilliard Equation”, Archive Rational Mechanics and Analysis, 96:4 (1986), 339–357 | DOI | MR | Zbl

[5] Novick-Cohen A., “On the Viscous Cahn–Hilliard Equation”, Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), Oxford Science Publishing, Oxford Univesity Press, N.Y., 1988, 329–342 | MR

[6] Cherfils L., Miranville A., Zelik S., “The Cahn–Hilliard Equation with Logarithmic Potentials”, Milan Journal of Mathematics, 79:2 (2011), 561–596 | DOI | MR | Zbl

[7] Colli P., Gilardi G., Podio-Guidugli P., Sprekels J., “Well-Posedness and Long-Time Behaviour for a Nonstandard Viscous Cahn–Hilliard System”, Society for Industrial and Applied Mathematics Journal on Applied Mathematics, 71:6 (2011), 1849–1870 | DOI | MR | Zbl

[8] Fried E., Gurtin M. E., “Continuum Theory of Thermally Induced Phase Transitions Based on an Order Parameter”, Physica D: Nonlinear Phenomena, 68:3–4 (1993), 326–343 | DOI | MR | Zbl

[9] Gurtin M., “Generalized Ginzburg–Landau and Cahn–Hilliard Equations Based on a Microforce Balance”, Physica D: Nonlinear Phenomena, 92:3–4 (1996), 178–192 | DOI | MR | Zbl

[10] Podio-Guidugli P., “Models of Phase Segregation and Diffusion of Atomic Species on a Lattice”, Ricerche di Matematica, 55:1 (2006), 105–118 | DOI | MR | Zbl

[11] Gilardi G., Miranville A., Schimperna G., “On the Cahn–Hilliard Equation with Irregular Potentials and Dynamic Boundary Conditions”, Communications on Pure Applied Analysis, 8:3 (2009), 881–912 | DOI | MR | Zbl

[12] Chill R., Fašangová E., Prüss J., “Convergence to Steady States of Solutions of the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Mathematische Nachrichten, 279:13–14 (2006), 1448–1462 | DOI | MR | Zbl

[13] Miranville A., Zelik S., “Robust Exponential Attractors for Cahn–Hilliard Type Equations with Singular Potentials”, Mathematical Methods in the Applied Sciences, 27:5 (2004), 545–582 | DOI | MR | Zbl

[14] Prüss J., Racke R., Zheng S., “Maximal Regularity and Asymptotic Behavior of Solutions for the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Annali di Matematica Pura ed Applicata, 185:4 (2006), 627–648 | DOI | MR | Zbl

[15] Racke R., Zheng S., “The Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Advances in Differential Equations, 8:1 (2003), 83–110 | MR | Zbl

[16] Wu H., Zheng S., “Convergence to Equilibrium for the Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Journal of Differential Equations, 204 (2004), 511–531 | DOI | MR | Zbl

[17] Gilardi G., Miranville A., Schimperna G., “Long Time Behavior of the Cahn–Hilliard Equation with Irregular Potentials and Dynamic Boundary Conditions”, Chinese Annal of Mathematics, Series B, 31:5 (2010), 679–712 | DOI | MR | Zbl

[18] Calatroni L., Colli P., “Global Solution to the Allen–Cahn Equation with Singular Potentials and Dynamic Boundary Conditions”, Nonlinear Analysis: Theory, Methods and Applications, 79 (2013), 12–27 | DOI | MR | Zbl

[19] Colli P., Sprekels J., “Optimal Control of an Allen–Cahn Equation with Singular Potentials and Dynamic Boundary Condition”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:1 (2015), 213–234 | DOI | MR | Zbl

[20] Colli P., Farshbaf-Shaker M. H., Sprekels J., “A Deep Quench Approach to the Optimal Control of an Allen–Cahn Equation with Dynamic Boundary Conditions and Double Obstacles”, Applied Mathematics and Optimization, 71:1 (2015), 1–24 | DOI | MR | Zbl

[21] Colli P., Gilardi G., Sprekels J., “On the Cahn–Hilliard Equation with Dynamic Boundary Conditions and a Dominating Boundary Potential”, Journal of Mathematical Analysis and Applications, 419:2 (2014), 972–994 | DOI | MR | Zbl

[22] Colli P., Gilardi G., Sprekels J., “A Boundary Control Problem for the Viscous Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Applied Mathematics and Optimization, 73:2 (2016), 195–225 | DOI | MR | Zbl

[23] Colli P., Gilardi G., Sprekels J., “A Boundary Control Problem for the Pure Cahn–Hilliard Equation with Dynamic Boundary Conditions”, Advances in Nonlinear Analysis, 4:4 (2015), 311–325 | DOI | MR | Zbl

[24] Colli P., Farshbaf-Shaker M. H., Gilardi G., Sprekels J., “Optimal Boundary Control of a Viscous Cahn–Hilliard System with Dynamic Boundary Condition and Double Obstacle Potentials”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:4 (2015), 2696–2721 | DOI | MR | Zbl

[25] Colli P., Fukao T., “Cahn–Hilliard Equation with Dynamic Boundary Conditions and Mass Constraint on the Boundary”, Journal of Mathematical Analysis and Applications, 429:2 (2015), 1190–1213 | DOI | MR | Zbl

[26] Colli P., Fukao T., “Equation and Dynamic Boundary Condition of Cahn–Hilliard Type with Singular Potentials”, Nonlinear Analysis: Theory, Methods and Applications, 127 (2015), 413–433 | DOI | MR | Zbl

[27] Hintermüller M., Wegner D., “Distributed Optimal Control of the Cahn–Hilliard System Including the Case of a Double-Obstacle Homogeneous Free Energy Density”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 50:1 (2012), 388–418 | DOI | MR | Zbl

[28] Wang Q.-F., Nakagiri S.-I., “Optimal Control of Distributed Parameter System Given by Cahn–Hilliard Equation”, Nonlinear Functional Analysis and Applications, 19 (2014), 19–33 | Zbl

[29] Zheng J., Wang Y., “Optimal Control Problem for Cahn–Hilliard Equations with State Constraint”, Journal of Dynamical and Control Systems, 21:2 (2015), 257–272 | DOI | MR | Zbl

[30] Zhao X. P., Liu C. C., “Optimal Control of the Convective Cahn–Hilliard Equation”, Applicable Analysis, 92:5 (2013), 1028–1045 | DOI | MR | Zbl

[31] Zhao X. P., Liu C. C., “Optimal Control for the Convective Cahn–Hilliard Equation in 2D Case”, Applied Mathematics and Optimization, 70:1 (2014), 61–82 | DOI | MR | Zbl

[32] Rocca E., Sprekels J., “Optimal Distributed Control of a Nonlocal Convective Cahn–Hilliard Equation by the Velocity in Three Dimensions”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 53:3 (2015), 1654–1680 | DOI | MR | Zbl

[33] Colli P., Farshbaf-Shaker M. H., Gilardi G., Sprekels J., “Second-Order Analysis of a Boundary Control Problem for the Viscous Cahn–Hilliard Equation with Dynamic Boundary Condition”, Annals Academy of Romanian Scientists. Series on Mathematics and its Applications, 7:1 (2015), 41–66 | MR | Zbl

[34] Hintermüller M., Wegner D., “Optimal Control of a Semidiscrete Cahn–Hilliard–Navier–Stokes System”, Society for Industrial and Applied Mathematics Journal on Control and Optimization, 52:1 (2014), 747–772 | DOI | MR | Zbl

[35] Wang Q.-F., “Optimal Distributed Control of Nonlinear Cahn–Hilliard Systems with Computational Realization”, Journal of Mathematical Sciences, 177:3 (2011), 440–458 | DOI | MR | Zbl

[36] Brezis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973 | MR