Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 4, pp. 105-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to mathematical modelling of processes, occurring in the flowing part of the vortex flowmeter, by the finite element method. The urgency of the current study is due to the lack of research in this area. The analysis of research literature devoted to the study of non-stationary vortex shedding processes and other hydrogasdynamics effects occurring in the flowing part of the vortex flowmeter and similar devices has been performed. A brief description of the vortex generation process behind the bluff body placed in a circular cross-section pipe as well as the basic criteria for functional products are presented. Various mathematical models for describing turbulent flows in pipes with an object or obstruction were investigated. The available software packages suitable for modelling unsteady turbulent flows were analyzed. The ANSYS software package, in particular CFX module for fluid and gas, as well as various approaches to mathematical modelling were used to simulate the flowing part of the vortex flowmeter. The article provides a brief description of the basic computational domain settings, mesh formation and initial and boundary conditions setting. To verify the numerical calculations, physical experiments on fluid and gas test benches were performed. For this purpose the samples corresponding to the numerical model have been manufactured and tested. The research findings led us to conclude that in terms of accuracy and calculation time the optimal approach to numerical simulation of vortex generation processes (Karman vortex street) in the vortex flowmeter is the use of the Reynolds-averaged Navier–Stokes equations (or RANS equations) closed by means of a two–equation model of turbulence, known as the $k-{\varepsilon}$ model, which is confirmed by comparison with the experimental data.
Keywords: mathematical modelling; turbulence model; flowing part; vortex flowmeter; bluff body.
@article{VYURU_2016_9_4_a9,
     author = {A. L. Kartashev and A. A. Krivonogov},
     title = {Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {105--116},
     year = {2016},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a9/}
}
TY  - JOUR
AU  - A. L. Kartashev
AU  - A. A. Krivonogov
TI  - Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 105
EP  - 116
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a9/
LA  - en
ID  - VYURU_2016_9_4_a9
ER  - 
%0 Journal Article
%A A. L. Kartashev
%A A. A. Krivonogov
%T Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 105-116
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a9/
%G en
%F VYURU_2016_9_4_a9
A. L. Kartashev; A. A. Krivonogov. Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 4, pp. 105-116. http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a9/

[1] Kremlevskiy P. P., Flowmeters and Counters, Mashinostroenie, L., 1989, 701 pp.

[2] Baker R. C., Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications, Cambridge University Press, N.Y., 2000, 524 pp. | DOI | Zbl

[3] Kremlevskiy P. P., Flowmeters and Counters of Substances Amount, v. 1, Politehnica, St. Petersburg, 2002, 409 pp.

[4] Kartashev A. L., Krivonogov A. A., “Research of Spatial Hydrodynamic Effects in the Meterbody of the Vortex Flowmeter”, Bulletin of the South Ural State University. Series: Mechanical Engineering Industry, 15:4 (2015), 5–13 (in Russian) | DOI

[5] Faber T. E., Fluid Dynamics for Physicists, Postmarcet, M., 2001, 560 pp. | MR

[6] Kartashev A. L., Krivonogov A. A., “Spatial Hydrodynamic Effects Investigation in the Vortex Flowmeter and Estimation of Numerical Simulation Capability”, SUSU Science. Section of Technical Sciences, Proceedings of 66th Scientific Conference, 2014, 33–40 (in Russian) http://dspace.susu.ru/xmlui/bitstream/handle/0001.74/4287/3.pdf

[7] Bogdanov V. D., Konyukhov A. V., Krivonogov A. A., Safonov E. V., Dorohov V. A., “Using of Numerical Simulation Methods in the Development of Vortex Flow Meters”, Sensor and Systems, 2012, no. 8(159), 40–43 (in Russian)

[8] Snegiryov A. Yu., High-Performance Computing in Technical Physics. Numerical Simulation of Turbulent Flows, Polytechnic University, St. Petersburg, 2009, 143 pp. (in Russian)

[9] Bailly C., Comete-Bellot G., Turbulence, Springer International Publishing, 2015, 360 pp. | DOI

[10] Spalart P. R., “Strategies for Turbulence Modelling and Simulations”, International Journal of Heat and Fluid Flow, 21 (2000), 252–263 | DOI

[11] Wilcox D. C., Turbulence Modelling for CFD, DCW Industries, La Canada, 1998, 460 pp.

[12] Spalart P. R., Allmaras S. R., 30th Aerospace Scinces Meeting and Exibit, Technical Report AIAA-92-0439, 1992, 22 pp. | DOI

[13] Launder B. E., Spalding D. B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972, 169 pp. | Zbl

[14] Lapin Ju. V., Strelec M. H., The Internal Flow of Gas Mixtures, Nauka, M., 1989, 368 pp.

[15] Pope S. B., Turbulent Flows, Cambridge Univ. Press, Cambridge, 2000, 771 pp. | DOI | MR | Zbl

[16] Orszag S. A., Yakhot V., Flannery W. S., Boysan F., Choudhury D., Maruzewski J., Patel B., “Renormalization Group Modelling and Turbulence Simulations”, International Conference on Near-Wall Turbulent Flows (Tempe, Arizona, 1993), 1031–1046

[17] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[18] Menter F. R., “Eddy Viscosity Transport Equations and their Relation to the $k-\varepsilon$ Model”, ASME Journal of Fluids Engineering, 119:4 (1997), 876–884 | DOI

[19] Menter F. R., Kuntz M., Langtry R., “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, Begell House, 2003, 625–632

[20] Menter F. R., “Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective”, International Journal of Computational Fluid Dynamics, 23:4 (2009), 305–316 | DOI | Zbl

[21] Shih T.-H., Liou W. W., Shabbir A., Yang Z., Zhu J., “A New $k-\varepsilon$ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation”, Computers and Fluids, 24:3 (1995), 227–238 | DOI | Zbl

[22] Behnia M., Parneix S., Shabany Y., Durbin P. A., “Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets”, International Journal of Heat and Fluid Flow, 20:1 (1999), 1–9 | DOI