@article{VYURU_2016_9_4_a0,
author = {V. K. Andreev},
title = {On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--16},
year = {2016},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a0/}
}
TY - JOUR AU - V. K. Andreev TI - On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 5 EP - 16 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a0/ LA - ru ID - VYURU_2016_9_4_a0 ER -
%0 Journal Article %A V. K. Andreev %T On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 5-16 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a0/ %G ru %F VYURU_2016_9_4_a0
V. K. Andreev. On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 4, pp. 5-16. http://geodesic.mathdoc.fr/item/VYURU_2016_9_4_a0/
[1] V. K. Andreev, “Unsteady 2D Motions a Viscous Fluid Described by Partially Invariant Solutions to the Navier–Stokes Equations”, Journal of Siberian Federal University. Mathematics and Physics, 8:2 (2015), 140–147 | DOI | MR
[2] V. K. Andreev, “On an Inverse Problem for Two-Dimensional Navier–Stokes Equation”, Abstracts of the International Conference “Differential Equations and Mathematical Modeling” (Ulan-Ude, 2015), 44–45
[3] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova et al., Mathematical Models of Convection, Walter de Gruyter GmbH Co. KG, Berlin, 2012, 417 pp. | DOI | MR
[4] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.-Y., 1999 | MR
[5] J. R. Cannot, Y. Lin, “Determination of a Parameter $p(t)$ in Some Quasi-Linear Parabolic Differential Equations”, Inverse Problems, 4 (1988), 35–45 | DOI | MR
[6] Vasin I. A., “On Some Inverse Problems of the Dynamics of a Viscous Incompressible Fluid in the Case of Integral Overdetermination”, Computational Mathematics and Mathematical Physics, 32:7 (1992), 955–963 | MR | Zbl
[7] Vasin I. A., Kamynin V. L., “On the Asymptotic Behavior of the Solutions of Inverse Problems for Parabolic Equations”, Siberian Mathematical Journal, 38:4 (1997), 647–662 | DOI | MR | Zbl
[8] Kozhanov A. I., “Parabolic Equations with an Unknown Time-Dependent Coefficient”, Computational Mathematics and Mathematical Physics, 45:12 (2005), 2085–2101 | MR | Zbl
[9] Pyatkov S. G., Safonov E. I., “On Some Classes of Linear Inverse Problems for Parabolic Equations”, Siberian Electronic Mathematical Reports, 11 (2014), 777–799 (in Russian) | Zbl
[10] Olver F., Introduction to Asymptotics and Special Functions, Nauka, M., 1978, 375 pp.
[11] Michlin S. G., Linear Partial Differential Equations, Vysshaia shkola, M., 1977, 431 pp.
[12] Ilyin V. A., “On the Solubility of Mixed Problems for Hyperbolic and Parabolic Equations”, Russian Mathematical Surveys, 15:2(92) (1960), 97–154 (in Russian) | Zbl
[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Nauka, M., 1981, 800 pp.
[14] Lavrentyev M. A., Shabat B. V., Methods of Theory of Complex Variable Functions, Nauka, M., 1973, 736 pp.
[15] Doetsch G., Anleitung zum praktischen Gebrauch der Laplace-Transformation, Nauka, M., 1965, 288 pp.
[16] Polyanin A. D., Manzhirov A. V., Handbook of Integral Equations, Factorial Press, M., 2000, 384 pp.