@article{VYURU_2016_9_3_a9,
author = {S. V. Solodusha and I. V. Mokry},
title = {A numerical solution of one class of {Volterra} integral equations of the first kind in terms of the machine arithmetic features},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {119--129},
year = {2016},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/}
}
TY - JOUR AU - S. V. Solodusha AU - I. V. Mokry TI - A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 119 EP - 129 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/ LA - en ID - VYURU_2016_9_3_a9 ER -
%0 Journal Article %A S. V. Solodusha %A I. V. Mokry %T A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 119-129 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/ %G en %F VYURU_2016_9_3_a9
S. V. Solodusha; I. V. Mokry. A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 119-129. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/
[1] Brunner H., van der Houwen P. J., The Numerical Solution of Volterra Equations, North-Holland, Amsterdam, 1986 | MR | Zbl
[2] Brunner H., Collocation Methods for Volterra Integtal and Related Funktional Differential Equations, Cambridge Univ. Press, N.Y., 2004 | DOI | MR
[3] Verlan' A. F., Sizikov V. S., Integral Equations: Methods, Algorithms, Programs, Nauk. dumka, Kiev, 1986 (in Russian) | MR | Zbl
[4] Apartsyn A. S., Nonclassical Linear Volterra Equations of the First Kind, VSP, Boston–Utrecht, 2003 ; A. S. Apartsin, Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999 | DOI | MR | Zbl
[5] Solodusha S. V., “Application of Numerical Methods for the Volterra Equations of the First Kind that Appear in an Inverse Boundary-Value Problem of Heat Conduction”, Izvestiya IGU. Matematika, 11 (2015), 96–105 (in Russian) | Zbl
[6] Solodusha S. V., Yaparova N. M., “Numerical Solution of the Volterra Equations of the First Kind that Appear in an Inverse Boundary-Value Problem of Heat Conduction”, Siberian Journal of Numerical Mathematics, 18:3 (2015), 321–329 | DOI | MR
[7] Yaparova N. M., “Numerical Simulation for Solving an Inverse Boundary Heat Conduction Problem”, Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 6:3 (2013), 112–124 (in Russian) | Zbl
[8] Jonas P., Louis A. K., “Approximate Inverse for a one Dimensional Inverse Heat Conduction Problem”, Inverse Problems, 16:1 (2000), 175–185 | DOI | MR | Zbl
[9] Prud'homme M., Hguyen T. H., “Fourier Analysis of Conjugate Gradient Method Applied to Inverse Heat Conduction Problems”, International Journal of Heat and Mass Transfer, 42 (1999), 4447–4460 | DOI | Zbl
[10] Kolodziej J., Mierzwiczak M., Cialkowski M., “Application of the Method of Fundamental Solutions and Radial Basis Functions for Inverse Heat Source Problem in Case of Steady-State”, International Communications in Heat and Mass Transfer, 37:2 (2010), 21–124 | DOI | MR
[11] Cialkowski M., Grysa K., “A Sequential and Global Method of Solving an Inverse Problem of Heat Conduction Equation”, Journal of Theoretical and Applied Mechanics, 48:1 (2010), 111–134
[12] Monde M., Arima H., Liu Wei, Mitutake Yuhichi, Hammad J. A., “An Analytical Solution for Two-Dimensional Inverse Heat Conduction Problems Using Laplace Transform”, International Journal of Heat and Mass Transfer, 46 (2003), 2135–2148 | DOI | Zbl
[13] Beilina L., Klibanov M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, N.Y., 2012 | DOI | Zbl
[14] Kabanikhin S. I., Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, 2011 | DOI | MR
[15] Kalitkin N. N., Numerical Methods, Nauka, M., 1978 (in Russian) | MR
[16] Mokry I. V., Khamisov O. V., Tsapakh A. S., “The Basic Mechanisms of the Emergence of Computational Errors in Computer Calculations”, Proc. IVth All-Russian Conference “Problems of Optimization and Economic Applications”, Nasledie, Omsk, 2009, 185 (in Russian)
[17] Linz P., “Product Integration Method for Volterra Integral Equations of the First Kind”, BIT Numerical Mathematics, 11 (1971), 413–421 | DOI | MR | Zbl
[18] Geng F. Z., Cui M. G., “Analytical Approximation to Solutions of Singularly Perturbed Boundary Value Problems”, Bulletin of the Malaysian Mathematical Sciences Society, 33:2 (2010), 221–232 | MR | Zbl
[19] Bulatov M. V., Budnikova O. S., “An Analysis of Multistep Methods for Solving Integral-Algebraic Equations: Construction of Stability Domains”, Computation Mathematics and Mathematical Physics, 53:9 (2013), 1260–1271 | DOI | MR | Zbl