A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 119-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The research is devoted to a numerical solution of the Volterra equations of the first kind that were obtained using the Laplace integral transforms for solving the equation of heat conduction. The paper consists of an introduction and two sections. The first section deals with the calculation of kernels from the respective integral equations at a fixed length of the significand in the floating point representation of a real number. The PASCAL language was used to develop the software for the calculation of kernels, which implements the function of tracking the valid digits of the significand. The test examples illustrate the typical cases of systematic error accumulation. The second section presents the results obtained from the computational algorithms which are based on the product integration method and the midpoint rule. The results of test calculations are presented to demonstrate the performance of the difference methods.
Keywords: Volterra integral equations of the first kind; numerical solution; product integration method.
@article{VYURU_2016_9_3_a9,
     author = {S. V. Solodusha and I. V. Mokry},
     title = {A numerical solution of one class of {Volterra} integral equations of the first kind in terms of the machine arithmetic features},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {119--129},
     year = {2016},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/}
}
TY  - JOUR
AU  - S. V. Solodusha
AU  - I. V. Mokry
TI  - A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 119
EP  - 129
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/
LA  - en
ID  - VYURU_2016_9_3_a9
ER  - 
%0 Journal Article
%A S. V. Solodusha
%A I. V. Mokry
%T A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 119-129
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/
%G en
%F VYURU_2016_9_3_a9
S. V. Solodusha; I. V. Mokry. A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 119-129. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a9/

[1] Brunner H., van der Houwen P. J., The Numerical Solution of Volterra Equations, North-Holland, Amsterdam, 1986 | MR | Zbl

[2] Brunner H., Collocation Methods for Volterra Integtal and Related Funktional Differential Equations, Cambridge Univ. Press, N.Y., 2004 | DOI | MR

[3] Verlan' A. F., Sizikov V. S., Integral Equations: Methods, Algorithms, Programs, Nauk. dumka, Kiev, 1986 (in Russian) | MR | Zbl

[4] Apartsyn A. S., Nonclassical Linear Volterra Equations of the First Kind, VSP, Boston–Utrecht, 2003 ; A. S. Apartsin, Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999 | DOI | MR | Zbl

[5] Solodusha S. V., “Application of Numerical Methods for the Volterra Equations of the First Kind that Appear in an Inverse Boundary-Value Problem of Heat Conduction”, Izvestiya IGU. Matematika, 11 (2015), 96–105 (in Russian) | Zbl

[6] Solodusha S. V., Yaparova N. M., “Numerical Solution of the Volterra Equations of the First Kind that Appear in an Inverse Boundary-Value Problem of Heat Conduction”, Siberian Journal of Numerical Mathematics, 18:3 (2015), 321–329 | DOI | MR

[7] Yaparova N. M., “Numerical Simulation for Solving an Inverse Boundary Heat Conduction Problem”, Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 6:3 (2013), 112–124 (in Russian) | Zbl

[8] Jonas P., Louis A. K., “Approximate Inverse for a one Dimensional Inverse Heat Conduction Problem”, Inverse Problems, 16:1 (2000), 175–185 | DOI | MR | Zbl

[9] Prud'homme M., Hguyen T. H., “Fourier Analysis of Conjugate Gradient Method Applied to Inverse Heat Conduction Problems”, International Journal of Heat and Mass Transfer, 42 (1999), 4447–4460 | DOI | Zbl

[10] Kolodziej J., Mierzwiczak M., Cialkowski M., “Application of the Method of Fundamental Solutions and Radial Basis Functions for Inverse Heat Source Problem in Case of Steady-State”, International Communications in Heat and Mass Transfer, 37:2 (2010), 21–124 | DOI | MR

[11] Cialkowski M., Grysa K., “A Sequential and Global Method of Solving an Inverse Problem of Heat Conduction Equation”, Journal of Theoretical and Applied Mechanics, 48:1 (2010), 111–134

[12] Monde M., Arima H., Liu Wei, Mitutake Yuhichi, Hammad J. A., “An Analytical Solution for Two-Dimensional Inverse Heat Conduction Problems Using Laplace Transform”, International Journal of Heat and Mass Transfer, 46 (2003), 2135–2148 | DOI | Zbl

[13] Beilina L., Klibanov M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, N.Y., 2012 | DOI | Zbl

[14] Kabanikhin S. I., Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, 2011 | DOI | MR

[15] Kalitkin N. N., Numerical Methods, Nauka, M., 1978 (in Russian) | MR

[16] Mokry I. V., Khamisov O. V., Tsapakh A. S., “The Basic Mechanisms of the Emergence of Computational Errors in Computer Calculations”, Proc. IVth All-Russian Conference “Problems of Optimization and Economic Applications”, Nasledie, Omsk, 2009, 185 (in Russian)

[17] Linz P., “Product Integration Method for Volterra Integral Equations of the First Kind”, BIT Numerical Mathematics, 11 (1971), 413–421 | DOI | MR | Zbl

[18] Geng F. Z., Cui M. G., “Analytical Approximation to Solutions of Singularly Perturbed Boundary Value Problems”, Bulletin of the Malaysian Mathematical Sciences Society, 33:2 (2010), 221–232 | MR | Zbl

[19] Bulatov M. V., Budnikova O. S., “An Analysis of Multistep Methods for Solving Integral-Algebraic Equations: Construction of Stability Domains”, Computation Mathematics and Mathematical Physics, 53:9 (2013), 1260–1271 | DOI | MR | Zbl