Coefficients identification in fractional diffusion models by the method of time integral characteristics
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 105-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inverse problems of identification of the fractional diffusivity and the order of fractional differentiation are considered for linear fractional anomalous diffusion equations with the Riemann–Liouville and Caputo fractional derivatives. As an additional information about the anomalous diffusion process, the concentration functions are assumed to be known at several arbitrary inner points of calculation domain. Numerically-analytical algorithms are constructed for identification of two required parameters of the fractional diffusion equations by approximately known initial data. These algorithms are based on the method of time integral characteristics and use the Laplace transform in time. The Laplace variable can be considered as a regularization parameter in these algorithms. It is shown that the inverse problems under consideration are reduced to the identification problem for a new single parameter which is formed by the fractional diffusivity, the order of fractional differentiation and the Laplace variable. Estimations of the upper error bound for this parameter are derived. A technique of optimal Laplace variable determination based on minimization of these estimations is described. The proposed algorithms are implemented in the AD-TIC package for the Maple software. A brief discussion of this package is also presented.
Keywords: anomalous diffusion; fractional derivatives; inverse coefficient problem; identification algorithm; software package.
@article{VYURU_2016_9_3_a8,
     author = {S. Yu. Lukashchuk},
     title = {Coefficients identification in fractional diffusion models by the method of time integral characteristics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {105--118},
     year = {2016},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a8/}
}
TY  - JOUR
AU  - S. Yu. Lukashchuk
TI  - Coefficients identification in fractional diffusion models by the method of time integral characteristics
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 105
EP  - 118
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a8/
LA  - en
ID  - VYURU_2016_9_3_a8
ER  - 
%0 Journal Article
%A S. Yu. Lukashchuk
%T Coefficients identification in fractional diffusion models by the method of time integral characteristics
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 105-118
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a8/
%G en
%F VYURU_2016_9_3_a8
S. Yu. Lukashchuk. Coefficients identification in fractional diffusion models by the method of time integral characteristics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 105-118. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a8/

[1] Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives. Theory and Applications, Gordon Breach Sci. Publishers, Amsterdam, 1993, 1006 pp. ; S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl | MR

[2] Podlubny I., Fractional Differential Equations, Academic press, San Diego, 1999, 340 pp. | MR | Zbl

[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[4] Uchaikin V. V., Method of Fractional Derivatives, Artishok Publ., Ul'yanovsk, 2008, 512 pp.

[5] R. Klages, G. Radons, I. M. Sokolov (eds.), Anomalous Transport: Foundations and Applications, Willey-VCH, Berlin, 2008, 584 pp.

[6] J. Klafter, S. C. Lim, R. Metzler (eds.), Fractional Dynamics: Recent Advances, World Scientific, Singapore, 2011, 532 pp. | MR

[7] Metzler R., Klafter J., “The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamic Approach”, Physics Reports, 339 (2000), 1–77 | DOI | MR | Zbl

[8] Uchaikin V. V., “Self-Similar Anomalous Diffusion and Levy-Stable Laws”, Physics-Uspekhi, 46:8 (2003), 821–849 | DOI

[9] Pskhu A. V., Partial Differential Equations of Fractional Order, Nauka, M., 2005, 199 pp. | MR | Zbl

[10] Luchko Yu., “Anomalous Diffusion: Models, Their Analysis, and Interpretation”, Advances in Applied Analysis, Birkhauser Verlag, Boston, 2012 | MR | Zbl

[11] Vlasov V. V., Shatalov S. Yu. et all., Thermophysical Measurements, Reference Manual, VNIIRTMash Publ., Tambov, 1975, 254 pp.

[12] Vlasov V. V., Seregina V. G., Shatalov Yu. S., “Integral Characteristics in the Determination of Coefficients of Parabolic Systems and Equations”, Journal of Engineering Physics and Thermophysics, 32:4 (1977), 453–458 | DOI

[13] Shatalov Yu. S., Integral Representation of Constant Heat Transfer Coefficients, Publ. of Ufa Aviation Institute, Ufa, 1992, 82 pp.

[14] Vlasov V. V., Shatalov Yu. S., Zotov E. N., Churikov A. A., Filin N. A., “Methods and Equipment for Nondestructive Control of the Thermophysical Properties of the Materials of Massive Solids”, Measurement Techniques, 23:6 (1980), 524–528 | DOI

[15] Shatalov Yu. S., Lukashchuk S. Yu., Rikachev Yu. Yu., “The Problem of Coefficients Identification in the Mathematical Model of the Ion Implantation Diffusion Process”, Inverse Problems in Engineering, 7 (1999), 267–290 | DOI

[16] Lukashchuk S. Yu., “Solving of Inverse Coefficients Problems for Equations of Parabolic Type by the Method of Integral Characteristic”, Vestnik UGATU, 4:2 (2003), 67–71 (in Russian)

[17] Lukashchuk S. Yu., “Estimation of Parameters in Fractional Subdiffusion Equations by the Time Integral Characteristics Method”, Computers and Mathematics with Applications, 62:3 (2011), 834–844 | DOI | MR | Zbl

[18] Krylov V. I., Approximate Calculation of Integrals, Nauka, M., 1967, 500 pp. [В. И. Крылов, Приближенное вычисление интегралов, Наука, М., 1987 ] | MR

[19] Lukashchuk S. Yu., AD-TIC: Identification of Parameters of Anomalous Diffusion Equation by the Method of Time Integral Characteristics, Certificate of State Registration for the Computer Program, No 2016610761, January 19, 2016 [Лукащук С. Ю., АД-ВИХ: идентификация параметров уравнения аномальной диффузии методом временных интегральных характеристик, Свидетельство о государственной регистрации программ для ЭВМ No 2016610761 от 19.01.2016]