Analysis of mathematical model of heat removal from the flat surface by the laminar moving refrigerant through conjugation porous medium
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 68-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of convective heat transfer in a flat porous channel for the laminar flow of Newtonian medium in the form of a boundary value problem for conjugate equations of Darcy–Brinkman–Forchheymer in Darcy–Brinkman approximation and heat transfer in the Schumann's form with the second kind thermal boundary conditions is proposed. An analytical solution of the model equations to calculate the thermal and hydrodynamic fields is obtained by the method of integral transforms. It allowed to find the exact ratios for the hydrodynamic entrance region length, Fanning's hydraulic friction coefficient, identify the local characteristics of the liquid phase and a porous skeleton temperature fields depending on the porosity, as well as to evaluate the local Nusselt numbers and determine the effective heat exchange domain. The data obtained do not contradict the classical results.
Keywords: porous media; heat transfer; flat channel; flow resistance; initial hydrodynamic region.
@article{VYURU_2016_9_3_a5,
     author = {V. I. Rjazhskih and D. A. Konovalov and M. I. Slyusarev and I. G. Drozdov},
     title = {Analysis of mathematical model of heat removal from the flat surface by the laminar moving refrigerant through conjugation porous medium},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {68--81},
     year = {2016},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a5/}
}
TY  - JOUR
AU  - V. I. Rjazhskih
AU  - D. A. Konovalov
AU  - M. I. Slyusarev
AU  - I. G. Drozdov
TI  - Analysis of mathematical model of heat removal from the flat surface by the laminar moving refrigerant through conjugation porous medium
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 68
EP  - 81
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a5/
LA  - ru
ID  - VYURU_2016_9_3_a5
ER  - 
%0 Journal Article
%A V. I. Rjazhskih
%A D. A. Konovalov
%A M. I. Slyusarev
%A I. G. Drozdov
%T Analysis of mathematical model of heat removal from the flat surface by the laminar moving refrigerant through conjugation porous medium
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 68-81
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a5/
%G ru
%F VYURU_2016_9_3_a5
V. I. Rjazhskih; D. A. Konovalov; M. I. Slyusarev; I. G. Drozdov. Analysis of mathematical model of heat removal from the flat surface by the laminar moving refrigerant through conjugation porous medium. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 68-81. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a5/

[1] A. D. Kraus, A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment, Hemisphere Publishing Co., Washington, 1983, 620 pp.

[2] Kalinin E. K., Dreytser G. A., Kopp I. Z., Myakochin A. S., Effective Heat Exchange Surfaces, Energoatomizdat, M., 1998, 408 pp.

[3] M. A. Delavar, M. Azimi, “I Using Porous for Heat Transfer Enhancement in Heat Exchangers: Review”, Journal of Engineering Science and Technology Review, 6:1 (2013), 14–16

[4] J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, 1991, 553 pp. | Zbl

[5] C. T. Hsu, P. Cheng, “Thermal Dispersion in a Porous Medium”, International Journal of Heat and Mass Transfer, 33:8 (1990), 1587–1597 | DOI | Zbl

[6] H. Beji, D. Gobin, “Influence of Thermal Dispersion on Natural-Convection Heat-Transfer in Porous-Media”, Numerical Heat Transfer, Part A, 22 (1992), 487–500 | DOI

[7] A. A. Gamal, P. Furmanski, “Problems of Modeling Flow and Heat Transfer in Porous Media”, Biuletyn Instytutu Techniki Cieplnej Politechniki Warszawskiej, 1997, no. 85, 55–88

[8] A. Amiri, K. Vafai, “Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media”, International Journal of Heat and Mass Transfer, 37:6 (1994), 939–954 | DOI

[9] Popov I. A., Hydrodynamics and Heat Transfer in Porous Heat Exchange Elements and Devices, Tsentr innovatsionnykh tekhnologiy, Kazan, 2007, 240 pp.

[10] K. Vafai, Handbook of Porous Media, CRC Press Taylor and Francis Group, N.-Y., 2005, 742 pp.

[11] D. B. Ingham, I. Pop (eds.), Transport Phenomena in Porous Media, v. III, Elsevier, Oxford, 2005, 476 pp.

[12] R. Ezzati, S. M. Rassoulinejad-Mousavi, “Application of Homotopy Perturbation Method for Solving Brinkman Momentum Equation for Fully Developed Forced Convection in a Porous Saturated Channel”, Mathematical Science, 5:2 (2011), 111–123 | MR | Zbl

[13] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, N.-Y., 2006, 654 pp. | MR | Zbl

[14] A. Zehforoosh, S. Hossainpour, A. Tahery, “Numerical Investigation of Forced Convection Heat Transfer for Laminar Flow in Various Parallel Porous Channels”, International Journal of Innovation Management, 1:3 (2010), 252–258

[15] M. R. Izadpanah, H. Muller-Steinhagen, M. Jamialahmadi, “Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium”, International Journal of Heat and Fluid Flow, 19 (1998), 629–635 | DOI

[16] Slyezkin N. A., The Viscous Incompressible Fluid Dynamics, Gos. izd-vo tekhniko-teoreticheskoy literatury, M., 1955, 579 pp.

[17] Emerging Technologies and Techniques in Porous Media, Kluwer Academic, Dordrecht–London, 2004 | MR | Zbl

[18] Dutsch G., Anleitung zum praktischen gebrauch der Laplace-transformation und der z-ransformation, Munchen–Wien–Oldenbourg, 1981 | MR

[19] Bird R. B., Stewart W. E., Lightfoot E. N., Transport Phenomena, J. Wiley and Sons, N.Y.–London, 2002, 914 pp.

[20] Kays W. M., London A. L., Compact Heat Exchangers, McGraw-Hill Book Co., N.Y., 1964, 272 pp.

[21] R. K. Shah, A. L. London, Laminar Flow Forced Convection in Ducts, Academic Press, N.-Y., 1978, 477 pp.

[22] Sneddon I. N., Fourier Transforms, McGraw-Hill, N.Y., 1951, 542 pp. | MR

[23] Vilemas Y. V., Voronin G. I., Dzyubenko B. V. et al., Intensification of Heat Exchange, v. 2, Mokslas, Vilnius, 1988, 188 pp.