@article{VYURU_2016_9_3_a3,
author = {A. I. Kibzun and O. M. Khromova},
title = {Mathematical modelling of a transport system with minimal maintenance costs},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {41--54},
year = {2016},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/}
}
TY - JOUR AU - A. I. Kibzun AU - O. M. Khromova TI - Mathematical modelling of a transport system with minimal maintenance costs JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 41 EP - 54 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/ LA - en ID - VYURU_2016_9_3_a3 ER -
%0 Journal Article %A A. I. Kibzun %A O. M. Khromova %T Mathematical modelling of a transport system with minimal maintenance costs %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 41-54 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/ %G en %F VYURU_2016_9_3_a3
A. I. Kibzun; O. M. Khromova. Mathematical modelling of a transport system with minimal maintenance costs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/
[1] G. Monge, Mémoire sur la théorie des déblais et de remblais. Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, Paris, 1781
[2] Yudin D. B., Problems and Methods of Stochastic Programming, Sovetskoye radio, M., 1979 (in Russian) | Zbl
[3] Borodinova I. A., Saraev L. A., “Stochastic Transportation Problem”, Vestnik of Samara State University, 2010, no. 81, 16–23 (in Russian)
[4] Kibzun A. I., Kan Yu. S., Stochastic Programming Problems with Probabilistic Criteria, Fizmatlit, M., 2009 (in Russian) | Zbl
[5] Bogdanov A. B., Naumov A. V., “Solution to a Two-Step Logistics Problem in a Quintile Statement”, Automation and Remote Control, 67:12 (2006), 1893–1899 | DOI | MR | Zbl
[6] Kibzun A. I., Khromova O. M., “On Reduction of the Multistage Problem of Stochastic Programming with Quantile Criterion to the Problem of Mixed Integer Linear Programming”, Automation and Remote Control, 75:4 (2014), 688–699 | DOI | MR | Zbl
[7] Kibzun A., “Comparison of Two Algorithms for Solving a Two-Stage Bilinear Stochastic Programming Problem with Quantile Criterion”, Applied Stochastic Models in Business and Industry, 31:6 (2015), 862–874 | DOI | MR
[8] Kibzun A. I., Naumov A. V., Norkin V. I., “On Reducing a Quantile Optimization Problem with Discrete Distribution to a Mixed Integer Programming Problem”, Automation and Remote Control, 74:6 (2013), 951–967 | DOI | MR | Zbl
[9] Kibzun A. I., Naumov A. V., Norkin V. I., “Reducing Two-Stage Probabilistic Optimization Problems with Discrete Distribution of Random Data to Mixed-Integer Programming Problems”, Cybernetics and Systems Analysis, 50:5 (2014), 679–692 | DOI | MR | Zbl
[10] Bukan D., Kenigsberg E., Scientific Inventory Management, Nauka, M., 1967 (in Russian)
[11] Brodetskiy G. L., Inventory Management, Eksmo, M., 2008 (in Russian)
[12] Birge J., Louveaux F., Introduction on Stochastic Programming, Springer, N.Y., 1997 | MR
[13] Gol'shtein E. G., Duality Theory in Mathematical Programming and Its Applications, Nauka, M., 1971 (in Russian) | MR