Mathematical modelling of a transport system with minimal maintenance costs
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 41-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest a mathematical model of a transport system. The model describes the delivery of products from several suppliers to different points of consumption. It is assumed that consumer demands are random. The model is a two-stage stochastic programming problem. At the first stage suppliers make the commodity stocks. At the second stage we consider the product distribution to the points of consumption while minimizing compensation expenses for the goods shortage caused by the random demand. The model takes into account a random loss that occurs during the transportation of goods and the detection of defective products. The total cost of the transport system operation is minimized. The algorithm for solving the problem is proposed. This algorithm is based on reduction of the original problem to an equivalent mixed-integer linear programming problem after discretization. An example is considered.
Keywords: mathematical modelling; stochastic programming; quantile function; two-stage problem; transport problem.
@article{VYURU_2016_9_3_a3,
     author = {A. I. Kibzun and O. M. Khromova},
     title = {Mathematical modelling of a transport system with minimal maintenance costs},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {41--54},
     year = {2016},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/}
}
TY  - JOUR
AU  - A. I. Kibzun
AU  - O. M. Khromova
TI  - Mathematical modelling of a transport system with minimal maintenance costs
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 41
EP  - 54
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/
LA  - en
ID  - VYURU_2016_9_3_a3
ER  - 
%0 Journal Article
%A A. I. Kibzun
%A O. M. Khromova
%T Mathematical modelling of a transport system with minimal maintenance costs
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 41-54
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/
%G en
%F VYURU_2016_9_3_a3
A. I. Kibzun; O. M. Khromova. Mathematical modelling of a transport system with minimal maintenance costs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a3/

[1] G. Monge, Mémoire sur la théorie des déblais et de remblais. Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, Paris, 1781

[2] Yudin D. B., Problems and Methods of Stochastic Programming, Sovetskoye radio, M., 1979 (in Russian) | Zbl

[3] Borodinova I. A., Saraev L. A., “Stochastic Transportation Problem”, Vestnik of Samara State University, 2010, no. 81, 16–23 (in Russian)

[4] Kibzun A. I., Kan Yu. S., Stochastic Programming Problems with Probabilistic Criteria, Fizmatlit, M., 2009 (in Russian) | Zbl

[5] Bogdanov A. B., Naumov A. V., “Solution to a Two-Step Logistics Problem in a Quintile Statement”, Automation and Remote Control, 67:12 (2006), 1893–1899 | DOI | MR | Zbl

[6] Kibzun A. I., Khromova O. M., “On Reduction of the Multistage Problem of Stochastic Programming with Quantile Criterion to the Problem of Mixed Integer Linear Programming”, Automation and Remote Control, 75:4 (2014), 688–699 | DOI | MR | Zbl

[7] Kibzun A., “Comparison of Two Algorithms for Solving a Two-Stage Bilinear Stochastic Programming Problem with Quantile Criterion”, Applied Stochastic Models in Business and Industry, 31:6 (2015), 862–874 | DOI | MR

[8] Kibzun A. I., Naumov A. V., Norkin V. I., “On Reducing a Quantile Optimization Problem with Discrete Distribution to a Mixed Integer Programming Problem”, Automation and Remote Control, 74:6 (2013), 951–967 | DOI | MR | Zbl

[9] Kibzun A. I., Naumov A. V., Norkin V. I., “Reducing Two-Stage Probabilistic Optimization Problems with Discrete Distribution of Random Data to Mixed-Integer Programming Problems”, Cybernetics and Systems Analysis, 50:5 (2014), 679–692 | DOI | MR | Zbl

[10] Bukan D., Kenigsberg E., Scientific Inventory Management, Nauka, M., 1967 (in Russian)

[11] Brodetskiy G. L., Inventory Management, Eksmo, M., 2008 (in Russian)

[12] Birge J., Louveaux F., Introduction on Stochastic Programming, Springer, N.Y., 1997 | MR

[13] Gol'shtein E. G., Duality Theory in Mathematical Programming and Its Applications, Nauka, M., 1971 (in Russian) | MR