Finding of values for sums of functional Rayleigh--Schrodinger series  for perturbed self-adjoint operators
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 137-143
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Authors of the article developed non-iteration method for calculating the values of eigenfunctions for perturbed self-adjoint operators, namely the method of regularized traces (RT). It allows to find the values of eigenfunctions of perturbed operators aware the spectral characteristics of unperturbed operator and the eigenvalues of the perturbed operator. In contrast to the known methods of finding the eigenfunctions, the RT method does not use the matrix, and the values of eigenfunctions are searched by linear formulas. This greatly increases its computational efficiency compared with classical methods. For application of the RT method in practice one should be able to summarize the functional Rayleigh–Schrodinger series of perturbed discrete operators. Previously authors obtained formulas for finding the "weighted" corrections of the perturbation theory, that allowed to approximate the sum of functional Rayleigh–Schrodinger series, by partial sums consisting of these corrections. In the article formulas for finding the values of sums of functional Rayleigh–Schrodinger series of perturbed discrete operators in the the nodal points were obtained. Computational experiments for finding the values of the eigenfunctions of the perturbed one-dimensional Laplace operator were conducted. The results of the experiment showed the high computational efficiency of this method of summation of the Rayleigh–Schrodinger series.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
perturbed operators; eigenvalues, eigenfunctions; multiple spectrum; the sum of functional Rayleigh–Schrodinger series, "weighted" corrections of the perturbation theory.
                    
                  
                
                
                @article{VYURU_2016_9_3_a11,
     author = {S. I. Kadchenko and S. N. Kakushkin},
     title = {Finding of values for sums of functional {Rayleigh--Schrodinger} series  for perturbed self-adjoint operators},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a11/}
}
                      
                      
                    TY - JOUR AU - S. I. Kadchenko AU - S. N. Kakushkin TI - Finding of values for sums of functional Rayleigh--Schrodinger series for perturbed self-adjoint operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 137 EP - 143 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a11/ LA - ru ID - VYURU_2016_9_3_a11 ER -
%0 Journal Article %A S. I. Kadchenko %A S. N. Kakushkin %T Finding of values for sums of functional Rayleigh--Schrodinger series for perturbed self-adjoint operators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 137-143 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a11/ %G ru %F VYURU_2016_9_3_a11
S. I. Kadchenko; S. N. Kakushkin. Finding of values for sums of functional Rayleigh--Schrodinger series for perturbed self-adjoint operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 137-143. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a11/
