@article{VYURU_2016_9_3_a1,
author = {D. N. Gainanov and V. A. Rasskazova},
title = {An inference algorithm for monotone {Boolean} functions associated with undirected graphs},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {17--30},
year = {2016},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a1/}
}
TY - JOUR AU - D. N. Gainanov AU - V. A. Rasskazova TI - An inference algorithm for monotone Boolean functions associated with undirected graphs JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 17 EP - 30 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a1/ LA - en ID - VYURU_2016_9_3_a1 ER -
%0 Journal Article %A D. N. Gainanov %A V. A. Rasskazova %T An inference algorithm for monotone Boolean functions associated with undirected graphs %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 17-30 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a1/ %G en %F VYURU_2016_9_3_a1
D. N. Gainanov; V. A. Rasskazova. An inference algorithm for monotone Boolean functions associated with undirected graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 3, pp. 17-30. http://geodesic.mathdoc.fr/item/VYURU_2016_9_3_a1/
[1] Gainanov D. N., Sombinatorial Geometry and Graphs in an Analysis of Infeasible Systems and Pattern Recognition, M., 2014 (in Russian)
[2] Gainanov D. N., “On One Criterion of the Optimality of an Algorithm for Evaluating Monotonic Boolean Functions”, USSR Computational Mathematics and Mathematical Physics, 24:4 (1984), 176–181 | DOI | MR
[3] Korshunov A. D., “Monotone Boolean functions”, Progress in Mathematical Sciences, 58:5(535) (2003), 89–162 (in Russian) | MR | Zbl
[4] Sapozhenko A. A., Dedekind's Problem and the Method of Boundary Functionals, M., 2009 (in Russian)
[5] Bioch J. C., Ibaraki T., Makino K., “Minimum Self-Dualdecompositions of Positive Dual-Minor Boolean Functions”, Discrete Applied Mathematics, 96–97 (1999), 307–326 | DOI | MR | Zbl
[6] Boros E., Hammer P., Ibaraki T., Kawakami K., “Polynomial Time Ecognition of 2-monotonic Positive Boolean Functions Given by an Oracle”, SIAM Journal on Computing, 26 (1997), 93–109 | DOI | MR | Zbl
[7] Domingo C., Mishra N., Pitt L., “Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries”, Machine Learning, 37:1 (1999), 89–110 | DOI | Zbl
[8] Makino K., Ibaraki T., “A Fast and Simple Algorithm for Identifying 2-Monotonic Positive Boolean Functions”, Journal of Algorithms, 26:2 (1998), 291–305 | DOI | MR | Zbl
[9] Makino K., Ibaraki T., “The Maximum Latency and Identification of Positive Boolean Functions”, SIAM Journal on Computing, 26 (1997), 1363–1383 | DOI | MR | Zbl
[10] Torvik V. I., Triantaphyllou E., “Guided Inference of Nested Monotone Boolean Functions”, Information Sciences, 151, suppl. (2003), 171–200 | DOI | MR | Zbl
[11] Triantaphyllou E., Data Mining and Knowleadge Discovery Via Logic-Based Methods. Theory, Algorithms and Applications, Springer, N.Y., 2010 | MR
[12] Valiant L., “A Theory of the Learnable”, Communications of the ACM, 27:11 (1984), 1134–1142 | DOI | Zbl
[13] Torvik V. I., Triantaphyllou E., “Inference of Monotone Boolean Functions”, Encyclopedia of Optimization, Springer, N. Y., 2009, 1591–1598 | DOI