Stationary solutions for the Cahn–Hilliard equation coupled with Neumann boundary conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of stationary states of the one-dimensional Cahn–Hilliard equation coupled with the Neumann boundary conditions has been studied. Here the free energy is given by a fourth order polynomial. The bifurcation diagram for existence and uniqueness of monotone solutions for this problem has been constructed. Namely, we find the length of the interval on which the solution monotonically increases or decreases and has one zero for some fixed values of physical parameters. Under the non-uniqueness we understand a possibility of existence of more than one monotone solutions for the same values of physical parameters.
Keywords: the Cahn–Hilliard equation; Neumann boundary conditions; steady states.
@article{VYURU_2016_9_2_a5,
     author = {I. B. Krasnyuk and R. M. Taranets and M. Chugunova},
     title = {Stationary solutions for the {Cahn{\textendash}Hilliard} equation coupled with {Neumann} boundary conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {60--74},
     year = {2016},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a5/}
}
TY  - JOUR
AU  - I. B. Krasnyuk
AU  - R. M. Taranets
AU  - M. Chugunova
TI  - Stationary solutions for the Cahn–Hilliard equation coupled with Neumann boundary conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 60
EP  - 74
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a5/
LA  - en
ID  - VYURU_2016_9_2_a5
ER  - 
%0 Journal Article
%A I. B. Krasnyuk
%A R. M. Taranets
%A M. Chugunova
%T Stationary solutions for the Cahn–Hilliard equation coupled with Neumann boundary conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 60-74
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a5/
%G en
%F VYURU_2016_9_2_a5
I. B. Krasnyuk; R. M. Taranets; M. Chugunova. Stationary solutions for the Cahn–Hilliard equation coupled with Neumann boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 60-74. http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a5/

[1] Cahn J.W., Hilliard J.E., “Free Energy of a Nonuniform System. I: Interfacial Free Energy”, The Journal of Chemical Physics, 28 (1958), 258–267 | DOI

[2] Carr J., Gurtin M.E., Slemrod M., “Structured Phase Transition on a Finite Interval”, Archive for Rational Mechanics and Analysis, 86 (1984), 317–351 | DOI | MR | Zbl

[3] Fife P.C., Penrose O., “Interfaced Dynamics for Thermodinamically Consistent Phase-Field Models with Nonconcerved Order Parameter”, Electronic Journal of Differential Equations, 16 (1995), 1–49 | MR

[4] Grinfeld M., Novick-Cohen A., “Counting Stationary Solutions of the Cahn–Hilliard Equation by Transversality Arguments”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 125:2 (1995), 351–370 | DOI | MR | Zbl

[5] Grinfeld M., Novick-Cohen A., “The Viscous Cahn–Hilliard Equation: Morse Decomposition and Structure of the Global Attractor”, Transactions of the American Mathematical Society, 351:6 (1999), 2375–2406 | DOI | MR | Zbl

[6] Provatas N., Elder K., Phase-Field Methods in Materials Science and Engineering, Wiley-VCH, Weinheim, 2010, 312 pp.

[7] Novick-Cohen A., Peletier L.A., “Steady States of the One-Dimensional Cahn–Hilliard Equation”, Proceeding of the Royal Society of Royal of Edinburg, 123A (1993), 1071–1098 | DOI | MR | Zbl

[8] Smoller J., Wasserman A., “Global Bifurcation of Steady-State Solutions”, Journal of Differential Equations, 39 (1981), 269–290 | DOI | MR | Zbl