@article{VYURU_2016_9_2_a4,
author = {S. V. Kornev},
title = {Method of nonsmooth integral guiding functions in periodic solutions problem for inclusions with causal multioperators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {46--59},
year = {2016},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a4/}
}
TY - JOUR AU - S. V. Kornev TI - Method of nonsmooth integral guiding functions in periodic solutions problem for inclusions with causal multioperators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 46 EP - 59 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a4/ LA - ru ID - VYURU_2016_9_2_a4 ER -
%0 Journal Article %A S. V. Kornev %T Method of nonsmooth integral guiding functions in periodic solutions problem for inclusions with causal multioperators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 46-59 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a4/ %G ru %F VYURU_2016_9_2_a4
S. V. Kornev. Method of nonsmooth integral guiding functions in periodic solutions problem for inclusions with causal multioperators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 46-59. http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a4/
[1] L. Tonelli, “Sulle equazioni funzionali di Volterra”, Bulletin of Calcutta Mathematical Society, 20 (1930), 31–48 | Zbl
[2] Tihonov A.N., “On Functional Equations of Volterra Type and Their Applications to Some Problems of Mathematical Physic”, Bulletin of the Moscow State University. Section A. Series: Mathematics and Mechanics, 1:8 (1938), 1–25 (in Russian)
[3] C. Corduneanu, Functional Equations with Causal Operators. Stability and Control: Theory, Methods and Applications, Taylor and Francis, London, 2002 | MR
[4] Z. Drici, F.A. McRae, Devi J. Vasundhara, “Differential Equations with Causal Operators in a Banach Space”, Nonlinear Analysis, 62:2 (2005), 301–313 | DOI | MR | Zbl
[5] Z. Drici, F.A. McRae, D.J. Vasundhara, “Monotone Iterative Technique for Periodic Boundary Value Problems with Causal Operators”, Nonlinear Analysis, 64:6 (2006), 1271–1277 | DOI | MR | Zbl
[6] T. Jankowski, “Boundary Value Problems with Causal Operators”, Nonlinear Analysis, 68:12 (2008), 3625–3632 | DOI | MR | Zbl
[7] V. Lupulescu, “Causal Functional Differential Equations in Banach Spaces”, Nonlinear Analysis, 69:12 (2008), 4787–4795 | DOI | MR | Zbl
[8] Burlakov E.O., Zhukovskiy E.S., “The Continuous Dependence of Solutions to Volterra Equations with Locally Contracting Operators on Parameters”, Russian Mathematics (Izvestiya VUZ. Matematika), 2010, no. 8, 12–23 | DOI | MR | Zbl
[9] Zhukovskiy E.S., Zhukovskiy T.V., Alves M.J., “Correctness of Equations with Generalized Volterra Maps of Metric Spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 15:6 (2010), 1669–1672 (in Russian)
[10] V. Obukhovskii, P. Zecca, “On Certain Classes of Functional Inclusions with Causal Operators in Banach Spaces”, Nonlinear Analysis, 74:8 (2011), 2765–2777 | DOI | MR | Zbl
[11] Krasnosel'skii M.A., The Operator of Translation along the Trajectories of Differential Equations, Nauka, M., 1966, 332 pp.
[12] Krasnosel'skii M.A., Perov A.I., “On Existence Principle for Bounded, Periodic and Almost Periodic Solutions to the Systems of Ordinary Differential Equations”, Dokl. Akad. Nauk SSSR, 123:2 (1958), 235–238 (in Russian) | MR | Zbl
[13] Krasnosel'skii M.A., Zabreiko P.P., Geometrical Methods of Nonlinear Analysis, Nauka, M., 1975, 512 pp.
[14] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, 1979 | DOI | MR | Zbl
[15] J. Mawhin, J.R. Ward, “Guiding-like Functions for Periodic or Bounded Solutions of Ordinary Differential Equations”, Discrete and Continuous Dynamical Systems, 8:1 (2002), 39–54 | MR | Zbl
[16] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V., Introduction to the Theory of Multivalued Maps and Differential Inclusions, Librokom, M., 2011, 226 pp.
[17] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin, 2006 | MR | Zbl
[18] A. Fonda, “Guiding Functions and Periodic Solutions to Functional Differential Equations”, Proceedings of the American Mathematical Society, 99:1 (1987), 79–85 | MR | Zbl
[19] S. Kornev, V. Obukhovskii, “On Some Developments of the Method of Integral Guiding Functions”, Functional Differential Equations, 12:3-4 (2005), 303–310 | MR | Zbl
[20] N.V. Loi, V. Obukhovskii, P. Zecca, “On the Global Bifurcation of Periodic Solutions of Differential Inclusions in Hilbert Spaces”, Nonlinear Analysis, 76 (2013), 80–92 | DOI | MR | Zbl
[21] S. Kornev, V. Obukhovskii, J.C. Yao, “On Asymptotics of Solutions for a Class of Functional Differential Inclusions”, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 34:2 (2014), 219–227 | DOI | MR | Zbl
[22] Kornev S.V., Obukhovskii V.V., “On Asymptotic Behavior of Solutions of Differential Inclusions and the Method of Guiding Functions”, Differential Equations, 51:6 (2015), 711–716 | DOI | DOI | MR | Zbl
[23] V. Obukhovskii, P. Zecca, N.V. Loi, S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis, Lecture Notes in Math., 2076, Springer, Berlin, 2013 | DOI | MR | Zbl
[24] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin–N.Y., 1992 | DOI | MR | Zbl
[25] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–N.Y., 2001 | DOI | MR
[26] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Kluwer AP, Dordrecht, 2004 | DOI | MR | Zbl
[27] Clark F., Optimization and Nonsmooth Analysis, Wiley, 1983, 308 pp. | MR | Zbl