@article{VYURU_2016_9_2_a3,
author = {A. I. Kozhanov},
title = {Inverse problems for determining boundary regimes for some equations of {Sobolev} type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {37--45},
year = {2016},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a3/}
}
TY - JOUR AU - A. I. Kozhanov TI - Inverse problems for determining boundary regimes for some equations of Sobolev type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 37 EP - 45 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a3/ LA - ru ID - VYURU_2016_9_2_a3 ER -
%0 Journal Article %A A. I. Kozhanov %T Inverse problems for determining boundary regimes for some equations of Sobolev type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 37-45 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a3/ %G ru %F VYURU_2016_9_2_a3
A. I. Kozhanov. Inverse problems for determining boundary regimes for some equations of Sobolev type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 37-45. http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a3/
[1] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y., 1999 | MR
[2] Kabanikhin S. I., Inverse and Ill-Posed Problems, Siberian publishing, Novosibirsk, 2009
[3] Alekseev C.V., Optimization in the Stationary Problems of Heat and Mass Transfer and Magnetic Hydrodynamics, Science World, 2010, 142–143; 32, No 11, 1319–1328
[4] Kostin A., Prilepko A., “On Some Problems of Restoration of a Boundary Condition for a Parabolic Equation”, Differential Equations, 32:1 (1996), 113–122 | MR | Zbl
[5] Boruhov V.T., Korzyuk V.I., “Application Neoclassical Boundary Value Problems for the Restoration of Boundary Modes of Transport Processes”, Vestnik Belorusskogo universiteta. Ser. I, 1998, no. 3, 54–57 (in Russian) | MR
[6] Boruhov V.T., Vabishchevich P.N., Korzyuk V.I., “The Reduction of a Class of Inverse Problems of Heat Conduction to Direct the Initial-Boundary Value Problems”, Inzhenerno-fizicheskiy zhurnal, 73:4 (2000), 742–747 (in Russian)
[7] Korotkiy A.I., “Reconstruction of Boundary Regimes in the Inverse Problem of Thermal Convection of an Incompressible Fluid”, Tr. IMM DVO AN, 12:2 (2006), 88–97 (in Russian)
[8] Kozhanov A.I., “The Problem of Recovery of the Boundary Condition for a Heat Equation”, Analiticheskiye metody analiza i differetsial'nyh uravneniy, Materialy 6 mezhdunarodnoy konferentsyi pamyati prof. A.A. Kilbasa, Izd. BGU, Minsk, 2012, 87–96
[9] Kozhanov A.I., “Linear Inverse Problems for Certain Classes of Non-Stationary Equation”, Trudy VI mezhdunarodnoy molodezhnoy shkoly-konferentsyi “Teoriya i chislennyye metody resheniy obratnyh i nekorrektnyh zadach”, Sibirskiye Elektronnyye Matematicheskiye Izvestiya, 12, 2015, 264–275
[10] Ionkin N.I., “Solution of a Boundary-Value Problem in Heat Condition with a Nonclassical Boundary Condition”, Differential Equations, 13:2 (1977), 204–211 | MR | Zbl | Zbl
[11] Pulkina L.S., “A Nonlocal Problem with Two Integral Conditions for Hyperbolic Equations on a Plane”, Non-Classical Equations of Mathematical Physics, Institut matematiki SO RAN, Novosibirsk, 2007, 232–236
[12] Kozhanov A.I., “On the Solvability of Some Boundary Value Problems with a Shift for Linear Hyperbolic Equations”, Mathematical Journal, 9:3 (2009), 78–92
[13] Kozhanov A.I., “On the Solvability of Boundary Value Problems with Non-Local and Integral Conditions for Parabolic Equations”, Nelineynye granichnyye zadachi, 20, IPMM NAN Ukrainy, 2010, 54–76 | MR | Zbl
[14] Pulkina L.S., Zadachi s neklassicheskimi usloviyami dlya giperbolicheskih uravneniy, Izd. Samarskogo Universiteta, Samara, 2012
[15] Kozhanov A.I., “Problems with Integral-Type Conditions for Some Classes of Nonstationary Equations”, Doklady Mathematics, 90:1 (2014), 440–443 | DOI | DOI | MR | Zbl
[16] Kozhanov A.I., “On the Solvability of Spatially Nonlocal Problems with Conditions of Integral Form for Some Classes of Non stationary Equations”, Differential Equations, 5:18 (2015), 1043–1050 | DOI | DOI | MR | Zbl
[17] Barenblatt G.I., Zheltov Yu.P., Kochina I.N., “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissyrized Rocks”, Journal of Applied Mathematics and Mechanics, 24:4 (1960), 1268–1303 | DOI | MR | Zbl
[18] G.V. Demidenko, S.V. Uspenskii, Partial Differential Equations and Systems not Solved with Respect to the Highest Order Derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003 | MR