@article{VYURU_2016_9_2_a11,
author = {T. Sh. Kal'menov and G. D. Arepova},
title = {On a heat and mass transfer model for the locally inhomogeneous initial data},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {124--129},
year = {2016},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/}
}
TY - JOUR AU - T. Sh. Kal'menov AU - G. D. Arepova TI - On a heat and mass transfer model for the locally inhomogeneous initial data JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 124 EP - 129 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/ LA - en ID - VYURU_2016_9_2_a11 ER -
%0 Journal Article %A T. Sh. Kal'menov %A G. D. Arepova %T On a heat and mass transfer model for the locally inhomogeneous initial data %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 124-129 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/ %G en %F VYURU_2016_9_2_a11
T. Sh. Kal'menov; G. D. Arepova. On a heat and mass transfer model for the locally inhomogeneous initial data. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 124-129. http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/
[1] Kal'menov T.Sh., Suragan D., “On Spectral Problems for the Volume Potential”, Doklady Mathematics, 80:2 (2009), 646–649 | DOI | MR | Zbl
[2] Kal'menov T.Sh., Suragan D., “A Boundary Condition and Spectral Problems for the Newton Potential”, Operator Theory: Advances and Applications, 216 (2010), 187–210 | MR
[3] Kal'menov T.Sh., Suragan D., “Transfer of Sommerfeld Radiation Conditions to the Boundary of a Bounded Domain”, Computational Mathematics and Mathematical Physics, 52:6 (2012), 1063–1068 (in Russian) | Zbl
[4] Kal'menov T.Sh., Tokmagambetov N.E., “On a Nonlocal Boundary Value Problem for the Multidimensional Heat Equation in a Noncylindrical Domain”, Siberian Mathematical Journal, 54:6 (2013), 1023–1028 | DOI | MR | Zbl
[5] Kal'menov T.Sh., Arepova G.D., “On Boundary Onditions for the Linear Integral Operators”, Reports of Adyghe (Circassian) International Academy of Sciences, 17:4 (2015), 34–41
[6] Vladimirov V.S., Equations of Mathematical Physics, Nauka, M., 1976 [В. С. Владимиров, Уравнения математической физики, Наука, М., 1981, 512 с. ] | MR | MR