On a heat and mass transfer model for the locally inhomogeneous initial data
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 124-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model case of the problem of heat diffusion in a homogeneous body with a special initial state. The peculiarity of this initial state is its local inhomogeneity. That is, there is a closed domain $\Omega$ inside a body, the initial state is constant out of the domain. Mathematical modelling leads to the problem for a homogeneous multi-dimensional diffusion equation. We construct the boundary conditions on the boundary of the domain $\Omega$, which can be characterized as "transparent" boundary conditions. We separately consider a special case — a model of redistribution of heat in a uniform linear rod, the side surface of which is insulated in the absence of (internal and external) sources of heat and of locally inhomogeneous initial state.
Keywords: diffusion equation; homogeneous body; initial state; local inhomogeneity; transparent boundary conditions.
@article{VYURU_2016_9_2_a11,
     author = {T. Sh. Kal'menov and G. D. Arepova},
     title = {On a heat and mass transfer model for the locally inhomogeneous initial data},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {124--129},
     year = {2016},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/}
}
TY  - JOUR
AU  - T. Sh. Kal'menov
AU  - G. D. Arepova
TI  - On a heat and mass transfer model for the locally inhomogeneous initial data
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 124
EP  - 129
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/
LA  - en
ID  - VYURU_2016_9_2_a11
ER  - 
%0 Journal Article
%A T. Sh. Kal'menov
%A G. D. Arepova
%T On a heat and mass transfer model for the locally inhomogeneous initial data
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 124-129
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/
%G en
%F VYURU_2016_9_2_a11
T. Sh. Kal'menov; G. D. Arepova. On a heat and mass transfer model for the locally inhomogeneous initial data. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 2, pp. 124-129. http://geodesic.mathdoc.fr/item/VYURU_2016_9_2_a11/

[1] Kal'menov T.Sh., Suragan D., “On Spectral Problems for the Volume Potential”, Doklady Mathematics, 80:2 (2009), 646–649 | DOI | MR | Zbl

[2] Kal'menov T.Sh., Suragan D., “A Boundary Condition and Spectral Problems for the Newton Potential”, Operator Theory: Advances and Applications, 216 (2010), 187–210 | MR

[3] Kal'menov T.Sh., Suragan D., “Transfer of Sommerfeld Radiation Conditions to the Boundary of a Bounded Domain”, Computational Mathematics and Mathematical Physics, 52:6 (2012), 1063–1068 (in Russian) | Zbl

[4] Kal'menov T.Sh., Tokmagambetov N.E., “On a Nonlocal Boundary Value Problem for the Multidimensional Heat Equation in a Noncylindrical Domain”, Siberian Mathematical Journal, 54:6 (2013), 1023–1028 | DOI | MR | Zbl

[5] Kal'menov T.Sh., Arepova G.D., “On Boundary Onditions for the Linear Integral Operators”, Reports of Adyghe (Circassian) International Academy of Sciences, 17:4 (2015), 34–41

[6] Vladimirov V.S., Equations of Mathematical Physics, Nauka, M., 1976 [В. С. Владимиров, Уравнения математической физики, Наука, М., 1981, 512 с. ] | MR | MR