@article{VYURU_2016_9_1_a5,
author = {V. A. Strauss and M. A. Winklmeier},
title = {On the one-dimensional harmonic oscillator with a singular perturbation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {73--91},
year = {2016},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a5/}
}
TY - JOUR AU - V. A. Strauss AU - M. A. Winklmeier TI - On the one-dimensional harmonic oscillator with a singular perturbation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2016 SP - 73 EP - 91 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a5/ LA - en ID - VYURU_2016_9_1_a5 ER -
%0 Journal Article %A V. A. Strauss %A M. A. Winklmeier %T On the one-dimensional harmonic oscillator with a singular perturbation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2016 %P 73-91 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a5/ %G en %F VYURU_2016_9_1_a5
V. A. Strauss; M. A. Winklmeier. On the one-dimensional harmonic oscillator with a singular perturbation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 1, pp. 73-91. http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a5/
[1] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, AMS Chelsea Publishing, Providence, RI, 2005 | MR | Zbl
[2] Berezansky Y. M., Sheftel Z. G., Us G. F., Functional Analysis, v. II, Operator Theory: Advances and Applications, 86, Birkhäuser Verlag, Basel, 1996 | MR | Zbl
[3] Berezin F. A., Faddeev L. D., “A Remark on Schrödinger's Equation with a Singular Potential”, Soviet Mathematics. Doklady, 1961, no. 2, 372–375 | Zbl
[4] Chernoff P. R., Hughes R. J., “A New Class of Point Interactions in One Dimension”, Journal of Functional Analysis, 111:1 (1993), 97–117 | DOI | MR | Zbl
[5] Eastham M. S. P., The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989 | MR | Zbl
[6] Gadella M., Glasser M. L., Nieto L. M., “The Infinite Square Well with a Singular Perturbation”, International Journal of Theoretical Physics, 50:7 (2011), 2191–2200 | DOI | MR | Zbl
[7] Gadella M., Glasser M. L., Nieto L. M., “One Dimensional Models with a Singular Potential of the Type $-\alpha\delta(x)+\beta\delta'(x)$”, International Journal of Theoretical Physics, 50:7 (2011), 2144–2152 | DOI | MR | Zbl
[8] Gohberg I., Lancaster P., Rodman L., Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005 | MR | Zbl
[9] Kato T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag New York, New York, 1966 | MR | Zbl
[10] Kurasov P., “Distribution Theory for Discontinuous Test Functions and Differential Operators with Generalized Coefficients”, Journal of Mathematical Analysis and Applications, 201:1 (1996), 297–323 | DOI | MR | Zbl
[11] Šeba P., “The Generalized Point Interaction in One Dimension”, Czechoslovak Journal of Physics B, 36:6 (1986), 667–673 | DOI | MR
[12] Triebel H., Higher Analysis. Hochschulbücher für Mathematik. [University Books for Mathematics], Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992 | MR
[13] Viana-Gomes J., Peres N. M. R., “Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: the Oddness of its Even-Parity Solutions”, European Journal of Physics, 32:5 (2011), 1377–1384 | DOI | Zbl
[14] Weidmann J., Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, 68, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl
[15] Weidmann J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[16] Zeldovic Ya. B., “Scattering by a Singular Potential in Perturbation Theory and in the Momentum Representation”, Soviet Physics. Journal of Experimental and Theoretical Physics, 1960, no. 11, 594–597 | MR