Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 1, pp. 130-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence theorem for systems of nonlinear Volterra integral equations kernels of the first kind with piecewise continuous is proved. Such equations model evolving dynamical systems. A numerical method for solving nonlinear Volterra integral equations of the first kind with piecewise continuous kernels is proposed using midpoint quadrature rule. Also numerical method for solution of systems of linear Volterra equations of the first kind is described. The examples demonstrate efficiency of proposed algorithms. The accuracy of proposed numerical methods is $\mathcal{O}(N^{-1})$.
Keywords: Volterra integral equations; discontinuous kernel; ill-posed problem; evolving dynamical systems; quadrature; Dekker–Brent method.
@article{VYURU_2016_9_1_a10,
     author = {I. R. Muftahov and D. N. Sidorov},
     title = {Solvability and numerical solutions of systems of nonlinear {Volterra} integral equations of the first kind with piecewise continuous kernels},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {130--136},
     year = {2016},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a10/}
}
TY  - JOUR
AU  - I. R. Muftahov
AU  - D. N. Sidorov
TI  - Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2016
SP  - 130
EP  - 136
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a10/
LA  - en
ID  - VYURU_2016_9_1_a10
ER  - 
%0 Journal Article
%A I. R. Muftahov
%A D. N. Sidorov
%T Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2016
%P 130-136
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a10/
%G en
%F VYURU_2016_9_1_a10
I. R. Muftahov; D. N. Sidorov. Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 9 (2016) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/VYURU_2016_9_1_a10/

[1] Sidorov D. N., Tynda A. N., Muftahov I. R., “Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 107–115 (in Russian) | DOI | Zbl

[2] Sidorov D. N., Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Science, ser. A, 87, World Sc. Publ., Singapore, 2015, 260 pp. | MR | Zbl

[3] Sidorov D. N., “Solution to the Volterra Integral Equations of the First Kind with Discontinuous Kernels”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 18 (277), 44–52 (in Russian) | Zbl

[4] Markova E. V., Sidorov D. N., “On One Integral Volterra Model of Developing Dynamical Systems”, Automation and Remote Control, 75:3 (2014), 413–421 | DOI | MR | Zbl

[5] Sidorov D. N., “Solution to Systems of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels”, Russian Mathematics, 57 (2013), 62–72 | DOI | MR | Zbl

[6] Brent R. P., “An Algorithm with Guaranteed Convergence for Finding a Zero of a Function”, The Computer Journal, 14:4 (1971), 422–425 | DOI | MR | Zbl

[7] Trenogin V. A., Functional Analysis, Fizmatlit, M., 2002 (in Russian)