@article{VYURU_2015_8_4_a9,
author = {A. A. Zamyshlyaeva and D. K. T. Al-Isawi},
title = {On some properties of solutions to one class of evolution {Sobolev} type mathematical models in {quasi-Sobolev} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {113--119},
year = {2015},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a9/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - D. K. T. Al-Isawi TI - On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 113 EP - 119 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a9/ LA - en ID - VYURU_2015_8_4_a9 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A D. K. T. Al-Isawi %T On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 113-119 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a9/ %G en %F VYURU_2015_8_4_a9
A. A. Zamyshlyaeva; D. K. T. Al-Isawi. On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a9/
[1] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[2] Sviridyuk G. A., “Phase Spaces of Semilinear Sobolev Type Equations with Relatively Strongly Sectorial Operator”, Algebra I Analiz, 6:5 (1994), 252–272 (in Russian) | MR
[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | DOI | MR | Zbl
[4] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR
[5] Manakova N. A., Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR
[6] Sagadeeva M. A., Dihotomies of Solutions to Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR
[7] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 7–18 (in Russian) | Zbl
[8] Al-Delfi J. K., “Quasi-Sobolev Spaces $\ell _{p}^{m}$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 (in Russian) | Zbl
[9] Sviridyuk G. A., Keller A. V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics, 41:5 (1997), 57–65 (in Russian) | MR | Zbl
[10] Zamyshlyeva A. A., Al-Isawi J. K. T., “Holomorphic Degenerate Operator Semigroups and Evolution Sobolev Type Equations in Quasi-Banach Spaces of Sequences”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:4 (2015), 27–36 (in Russian) | DOI
[11] Keller A. V., Zamyshlyaeva A. A., Sagadeeva M. A., “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl