On existence of solutions to stochastic differential equations with current velocities
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 100-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of mean derivatives was introduced by E. Nelson in 60-th years of XX century and at the moment there are a lot of mathematical models of physical processes constructed in terms of those derivatives. The paper is devoted to investigation of stochastic differential equations with current velocities, i.e., with Nelson's symmetric mean derivatives. Since the current velocities of stochastic processes are natural analogues of ordinary physical velocities of deterministic processes, such a research is important for investigation of models of physical processes that take into account stochastic properties. An existence of solution theorem for those equations is obtained.
Keywords: mean derivatives; equations with current velocities; existence and uniqueness of solutions.
@article{VYURU_2015_8_4_a7,
     author = {S. V. Azarina and Yu. E. Gliklikh},
     title = {On existence of solutions to stochastic differential equations with current velocities},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {100--106},
     year = {2015},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a7/}
}
TY  - JOUR
AU  - S. V. Azarina
AU  - Yu. E. Gliklikh
TI  - On existence of solutions to stochastic differential equations with current velocities
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 100
EP  - 106
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a7/
LA  - en
ID  - VYURU_2015_8_4_a7
ER  - 
%0 Journal Article
%A S. V. Azarina
%A Yu. E. Gliklikh
%T On existence of solutions to stochastic differential equations with current velocities
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 100-106
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a7/
%G en
%F VYURU_2015_8_4_a7
S. V. Azarina; Yu. E. Gliklikh. On existence of solutions to stochastic differential equations with current velocities. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 100-106. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a7/

[1] Nelson E., “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Review, 150:4 (1966), 1079–1085 | DOI

[2] Nelson E., Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967, 142 pp. | MR

[3] Nelson E., Quantum Fluctuations, Princeton University Press, Princeton, 1985, 147 pp. | MR | Zbl

[4] Gihman I. I., Skorohod A. V., Theory of Stochastic Processes, v. 3, Springer-Verlag, New York, 1979 ; Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975, 496 pp. | DOI | Zbl | MR

[5] Parthasarathy K. R., Introduction to Probability and Measure, Springer-Verlag, New York, 1978 ; Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988, 343 pp. | MR | MR

[6] Schutz B. F., Geometrical Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1982; B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984, 303 pp.

[7] Azarina S. V., Gliklikh Yu. E., “Differential Inclusions with Mean Derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49–71 | MR | Zbl

[8] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011, 460 pp. | DOI | MR | Zbl

[9] Cresson J., Darses S., “Stochastic Embedding of Dynamical Systems”, Journal of Mathematical Physics, 48 (2007), 072703, 54 pp. | DOI | MR | Zbl

[10] Gliklikh Yu. E., Mashkov E. Yu., “Stochastic Leontieff Type Equations and Mean Derivatives of Stochastic Processes”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 25–39 | Zbl