An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 50-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a problem of two bodies bonded through a thin adhesive layer (a third material) of thickness $\delta $. Leting $\delta $ go to zero, one obtains a boundary value transmission problem set on a fixed domain. We then give new results for the study of this problem in the framework of Hölder spaces: an explicit representation of the solution and necessary and sufficient conditions at the interface for its optimal regularity are obtained using the semigroups theory and the real interpolation spaces.
Keywords: boundary value problem of elliptic type; transmission problems; impedance effect; thin layer.
@article{VYURU_2015_8_4_a4,
     author = {A. Favini and R. Labbas and K. Lemrabet},
     title = {An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {50--75},
     year = {2015},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a4/}
}
TY  - JOUR
AU  - A. Favini
AU  - R. Labbas
AU  - K. Lemrabet
TI  - An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 50
EP  - 75
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a4/
LA  - en
ID  - VYURU_2015_8_4_a4
ER  - 
%0 Journal Article
%A A. Favini
%A R. Labbas
%A K. Lemrabet
%T An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 50-75
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a4/
%G en
%F VYURU_2015_8_4_a4
A. Favini; R. Labbas; K. Lemrabet. An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 50-75. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a4/

[1] Grisvard P., “Spazi di Tracce e Applicazioni”, Rendiconti di Matematica, série VI, 5:4 (1972), 657–729 | MR

[2] Krasucki F., Lenci S., “Analysis of Interfaces of Variable Stiffness”, International Journal of Solids and Structures, 37 (2000), 3619–3632 | DOI | Zbl

[3] Krasucki F., Lenci S., “Yield Design of Bonded Joints”, European Journal of Mechanics–A/Solids, 19:4 (2000), 649–667 | DOI | MR | Zbl

[4] Geymonat G., Krasucki F., Lenci S., “Mathematical Analysis of a Bonded Joint with a Soft Thin Adhesive”, Math. Mech. Solids, 4:2 (1999), 201–225 | DOI | MR

[5] Belhamiti O., Labbas R., Lemrabet K., Medeghri A., “Transmission Problems in a Thin Layer Set in the Framework of the Hölder Spaces, Resolution and Impedance”, Journal of Mathematical Analysis and Applications, 358 (2009), 457–484 | DOI | MR | Zbl

[6] Dore A., Favini A., Labbas R., Lemrabet K., “An Abstract Transmission Problem in a Thin Layer. I: Sharp Estimates”, Journal of Functional Analysis, 261 (2011), 1865–1922 | DOI | MR | Zbl

[7] Sinestrari E., “On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions”, J. Math. Anal. App., 66 (1985), 16–66 | DOI | MR | Zbl

[8] Dore G., Venni A., “$H^{\infty }$ Functional Calculus for Sectorial and Bisectorial Operators”, Studia Math., 166 (2005), 221–241 | DOI | MR | Zbl

[9] Haase M., The Functional Calculus for Sectorial Operators and Similarity Methods, Thesis, Universität Ulm, Germany, 2003 | Zbl

[10] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995 | MR | Zbl

[11] Cartan H., Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes, Hermann, Paris, 1961 | MR

[12] Campanato S., “Generation of Analytic Semigroups by Elliptic Operators of Second Order in Hölder Spaces”, Annal. Sc. Norm. Super. Pisa Cl. Sci., 4:8(3) (1981), 495–512 | MR

[13] Da Prato G., Grisvard P., “Sommes d'opérateurs linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl., IX Ser., 54:3 (1975), 305–387 | MR | Zbl

[14] Labbas R., Problèmes aux limites pour une équation différentielle abstraite de type elliptique, Thèse d'état, Université de Nice, 1987 | Zbl

[15] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[16] Tanabe H., Equations of Evolution, Monographs and Studies in Mathematics, 6, Pitman, London–San Francisco–Melbourne, 1979 | MR | Zbl