@article{VYURU_2015_8_4_a13,
author = {M. A. Sagadeeva and F. L. Hasan},
title = {Bounded solutions of {Barenblatt{\textendash}Zheltov{\textendash}Kochina} model in {quasi-Sobolev} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {138--144},
year = {2015},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/}
}
TY - JOUR AU - M. A. Sagadeeva AU - F. L. Hasan TI - Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 138 EP - 144 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/ LA - ru ID - VYURU_2015_8_4_a13 ER -
%0 Journal Article %A M. A. Sagadeeva %A F. L. Hasan %T Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 138-144 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/ %G ru %F VYURU_2015_8_4_a13
M. A. Sagadeeva; F. L. Hasan. Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 138-144. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/
[1] Al-Delfi J. K., “Quasi-Sobolev Spaces $\ell^m_p$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 (in Russian) | Zbl
[2] Al-Delfi J. K., “Laplas Quasi-Operator in Quasi-Sobolev Spaces”, Bulletin of Samara State Technical University. Series Physics Mathematics Sciences, 2013, no. 2(13), 13–16 (in Russian) | DOI
[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations, Chelyabinsk State University, Chelyabinsk, 2003, 179 pp. (in Russian)
[4] Keller A. V., Al-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:1 (2015), 20–27 (in Russian) | MR
[5] F. L. Hasan, “Solvability of Initial Problems for One Class of Dynamical Equations in Quasi-Sobolev Spaces”, Journal of Computational and Engineering Mathematics, 2:3 (2015), 34–42 | DOI
[6] Sagadeeva M. A., Hasan F. L., “Existence of Invariant Spaces and Exponential Dichotomies of Solutions for Dynamical Sobolev Type Equations in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:4 (2015), 50–57 (in Russian) | DOI
[7] Fedorov V. E., Sagadeeva M. A., “Solutions, Bounded on the Line, of Sobolev-Type Linear Equations with Relatively Sectorial Operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:4 (2005), 77–80 | MR | Zbl
[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl
[9] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 7–18 (in Russian) | Zbl
[10] Hasan F. L., “Relatively Spectral Theorem in Quasi-Banach Spaces”, Voronezh Winter Matematical School, Voronezh, 2014, 393–396 (in Russian) | Zbl