Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 138-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Sobolev type equations are studied quite complete in Banach spaces. Quasi-Sobolev spaces are quasi normalized complete spaces of sequences. Recently the Sobolev type equations began to be studied in these spaces. The paper is devoted to the study of boundary on axis solutions for the Barenblatt–Zheltov–Kochina model. Apart the introdsction and bibliograthy the paper contain two parts. In the first one gives preliminary information about the properties of operators in quasi Banach spaces, as well as about the relatively bounded operator. The second part gives main result of the paper about boundary on axis solutions for the Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces. Note that reference list reflects the tastes of the author and can be supplemented.
Keywords: Sobolev type equation; spaces of sequances; Laplase quasi-operator; Grin function; analogue of Barenblatt–Zheltov–Kochina model.
@article{VYURU_2015_8_4_a13,
     author = {M. A. Sagadeeva and F. L. Hasan},
     title = {Bounded solutions of {Barenblatt{\textendash}Zheltov{\textendash}Kochina} model in {quasi-Sobolev} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {138--144},
     year = {2015},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - F. L. Hasan
TI  - Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 138
EP  - 144
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/
LA  - ru
ID  - VYURU_2015_8_4_a13
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A F. L. Hasan
%T Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 138-144
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/
%G ru
%F VYURU_2015_8_4_a13
M. A. Sagadeeva; F. L. Hasan. Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 138-144. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a13/

[1] Al-Delfi J. K., “Quasi-Sobolev Spaces $\ell^m_p$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 (in Russian) | Zbl

[2] Al-Delfi J. K., “Laplas Quasi-Operator in Quasi-Sobolev Spaces”, Bulletin of Samara State Technical University. Series Physics Mathematics Sciences, 2013, no. 2(13), 13–16 (in Russian) | DOI

[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations, Chelyabinsk State University, Chelyabinsk, 2003, 179 pp. (in Russian)

[4] Keller A. V., Al-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:1 (2015), 20–27 (in Russian) | MR

[5] F. L. Hasan, “Solvability of Initial Problems for One Class of Dynamical Equations in Quasi-Sobolev Spaces”, Journal of Computational and Engineering Mathematics, 2:3 (2015), 34–42 | DOI

[6] Sagadeeva M. A., Hasan F. L., “Existence of Invariant Spaces and Exponential Dichotomies of Solutions for Dynamical Sobolev Type Equations in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:4 (2015), 50–57 (in Russian) | DOI

[7] Fedorov V. E., Sagadeeva M. A., “Solutions, Bounded on the Line, of Sobolev-Type Linear Equations with Relatively Sectorial Operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:4 (2005), 77–80 | MR | Zbl

[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl

[9] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 7–18 (in Russian) | Zbl

[10] Hasan F. L., “Relatively Spectral Theorem in Quasi-Banach Spaces”, Voronezh Winter Matematical School, Voronezh, 2014, 393–396 (in Russian) | Zbl