Optimal control for a mathematical model of nerve impulse spreading
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 120-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article concerns the matter of existence of optimal control for the mathematical model set forward by R. Fitzhugh and J. M. Nagumo for modelling of nerve impulse spreading. The model belongs to the group of diffusion-reaction models simulating a wide range of processes such as chemical reactions with diffusion and nerve impulse spreading. In case, that there is an asymptotical stability of the studied model, and under an assumption that the rate of variation of one component is greatly higher than the other one, the said model could be reduced to a problem of optimal control of a Sobolev type semi-linear equation with Showalter–Sidorov initial condition. The article contents a demonstration of the only weak generalized solution for the model under discussion with Showalter–Sidorov initial condition and optimal control existence.
Mots-clés : Sobolev type equations; optimal control; diffusion-reaction equations.
@article{VYURU_2015_8_4_a10,
     author = {N. A. Manakova and O. V. Gavrilova},
     title = {Optimal control for a mathematical model of nerve impulse spreading},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {120--126},
     year = {2015},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a10/}
}
TY  - JOUR
AU  - N. A. Manakova
AU  - O. V. Gavrilova
TI  - Optimal control for a mathematical model of nerve impulse spreading
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 120
EP  - 126
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a10/
LA  - ru
ID  - VYURU_2015_8_4_a10
ER  - 
%0 Journal Article
%A N. A. Manakova
%A O. V. Gavrilova
%T Optimal control for a mathematical model of nerve impulse spreading
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 120-126
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a10/
%G ru
%F VYURU_2015_8_4_a10
N. A. Manakova; O. V. Gavrilova. Optimal control for a mathematical model of nerve impulse spreading. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 120-126. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a10/

[1] R. Fitz Hugh, “Mathematical Models of Threshold Phenomena in the Nerve Membrane”, Bulletin of Mathematical Biology, 17:4 (1955), 257–278

[2] J. Nagumo, S. Arimoto, S. Yoshizawa, “An Active Pulse Transmission Line Simulating Nerve Axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 | DOI

[3] Bokareva T. A., Sviridyuk G. A., “Whitney Folds of the Phase Spaces of Some Semilinear Equations of Sobolev Type”, Mathematical Notes, 55:3–4 (1994), 237–242 | DOI | MR | Zbl

[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear the Sobolev Type Equations, Fizmatlit, M., 2007, 736 pp. (in Russian)

[5] Lions J.-L., Quelques mérthodes de reśolution des problémes aux limites non linéaires, Dunod, Paris, 1968 | MR | MR

[6] Sviridyuk G. A., Efremov A. A., “Optimal Control of Sobolev Type Linear Equations with Relativity $p$-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl

[7] Keller A. V., Sagadeeva M. A., “The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev Type”, Belgorod State University Scientific Bulletin. Mathematics, Physics, 32:19 (2013), 57–66 (in Russian)

[8] Sviridyuk G. A., “On the Solvability of Singular Systems of Ordinary Differential Equations”, Differential Equations, 23:9 (1987), 1637–1639 (in Russian) | MR | Zbl